Machine Learning Exercises: HMM

Laura Kallmeyer

Summer 2016, Heinrich-Heine-Universität Düsseldorf

Exercise 1 Consider the following HMM for POS tagging:

- 1. Given this HMM, calculate the forward and backward probabilities α and β for the observation sequence "chief talks".
- 2. What is the probability of this sequence? How can this probability be obtained from the α and β tables?

Solution:

2.
$$0 \cdot 2.4 \cdot 10^{-2} + 4 \cdot 10^{-2} \cdot 6.6 \cdot 10^{-2} + 8 \cdot 10^{-2} \cdot 3 \cdot 10^{-2} = 5.02 \cdot 10^{-3}$$
 or $4.79 \cdot 10^{-3} \cdot 0.3 + 1.8 \cdot 10^{-2} \cdot 0.2 + 0 \cdot 0.2 = 5.02 \cdot 10^{-3}$

Exercise 2 Now consider again the ice cream example from the course slides:

assume that the observed sequence is 31.

The forward and backward matrices for this input are:

$$\alpha: \begin{array}{c|cccc} H & 0.2 & 9 \cdot 10^{-2} \\ \hline C & 0.3 & 9 \cdot 10^{-2} \\ \hline t & 1 & 2 \\ \hline \end{array} \qquad \begin{array}{c|cccc} H & 9 \cdot 10^{-2} & 0.4 \\ \hline C & 0.12 & 0.2 \\ \hline t & 1 & 2 \\ \hline \end{array} \qquad \begin{array}{c|cccc} P(31) = 5.4 \cdot 10^{-2} \\ \hline \end{array}$$

Calculate one iteration of the forward-backward EM algorithm in order to estimate new probabilities.

Solution:

E-step:
$$\gamma$$
: $\begin{tabular}{c|cccc} t & H & C \\ \hline 1 & 0.33 & 0.67 \\ 2 & 0.67 & 0.33 \end{tabular} & \xi_1$: $\begin{tabular}{c|cccc} $j=H$ & $j=C$ \\ \hline $i=H$ & 0.22 & 0.11 \\ $i=C$ & 0.44 & 0.22 \end{tabular}$$

M-step:

$$\begin{array}{c|c} & 0.67 & 0.67 \\ \hline 0.33 & 0.22 & 0.11 \\ \hline 0.33 & 0.33 \\ \hline P(1|H) = 0.67 \\ P(3|H) = 0.33 \\ \hline \end{array} \\ \begin{array}{c} & 0.11 \\ \hline 0.44 & 0.33 \\ \hline \end{array} \\ \begin{array}{c} & P(1|C) = 0.33 \\ \hline P(3|C) = 0.67 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} & P(1|C) = 0.33 \\ \hline P(3|C) = 0.67 \\ \hline \end{array} \\ \end{array}$$

Further steps (were not asked in the exercise):

M-step:

M-step:

i = C

M-step:

0