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Introduction

HMM is a generative sequence classi�er.
MaxEnt is a discriminative classi�er.
Today: discriminative sequence classi�er, combining HMM and
MaxEnt.

La�erty et al. (2001); Sha & Pereira (2003); Wallach (2002, 2004)
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Motivation

Naive Bayes is a generative classi�er assigning a single class to
a single input.

MaxEnt is a discriminative classi�er assigning a single class to
a single input.

HMM is a generative sequence classi�er assigning sequences of
classes to sequences of input symbols.

CRF is a discriminative sequence classi�er assigning sequences
of classes to sequences of input symbols.

single classi�cation sequence classi�cation
generative naive Bayes HMM
discriminative MaxEnt CRF
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Motivation
Generative classi�ers compute the probability of a class y
given an input x as

P(y∣x) =
P(x∣y)P(y)

P(x)
=

P(x,y)
P(x)

HMM is a generative classi�er:

P(q∣o) =
P(o,q)
P(o)

For the classi�cation, we have to compute

argmax
q∈Qn

P(o,q) = argmax
q∈Qn

P(o∣q)P(q)

�e computation of the joint probability P(x,y) (here P(o,q))
is a complex task.

In contrast, MaxEnt classi�ers directly compute the conditional
probability P(y∣x) that has to be maximized.
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Motivation

�e move from generative to discriminative sequence classi�cation
(HMM to CRF) has two advantages:

We do not need to compute the joint probability any longer.

�e strong independence assumptions of HMMs can be relaxed
since features in a discriminative approach can capture depen-
dencies that are less local than the n-gram based featues of
HMMs.

Feature weights need not be probabilities, i.e., can have values
lower than 0 or greater than 1.
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Conditional Random Fields

Goal: determine the best sequence y ∈ Cn of classes, given an input
sequence x of length n.

ŷ = argmax
y∈Cn

P(y∣x)

CRF Applications
Sample applications are:

POS tagging Ratnaparkhi (1997)
shallow parsing Sha & Pereira (2003)
Named Entity Recognition (Stanford NER)a Finkel et al. (2005)
language identi�cation Samih & Maier (2016)

ahttp://nlp.stanford.edu/software/CRF-NER.shtml
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Conditional Random Fields

�e probability of a class sequence for an input sequence depends on
features (so-called potential functions).

Features refer to the potential class of some input symbol xi and to
the classes of some other input symbols.

Features are usually indicator functions that will be weighted.

Sample features

t(yi−1,yi,x, i) = {
1 if xi =“September” and yi−1 = IN and yi =NNP
0 otherwise

(taken from Wallach (2004))

s(yi,x, i) = {
1 if xi =“to” and yi =TO
0 otherwise
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Conditional Random Fields

�e dependencies that are expressed within the features can be
captured in a graph.

CRF graph
If we have only transition features applying to yi−1,yi,x, i and state
features applying to yi,x, i, we get a chain-structured CRF:

y1 y2 y3 . . .
yn−1 yn

x1 . . .xn
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Conditional Random Fields

In order to compute the probability of a class sequence for an input
sequence, we

extract the corresponding features,
combine them linearly (= multiplying each by a weight and
adding them up)
and then applying a function to this linear combination, exactly
as in the MaxEnt case.

In the following, we assume that we have only transition features and
state features where the la�er can also be considered a transition
feature (that gives the same value for all preceding states). I.e., every
features has the form f (yi−1,yi,x, i).
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Conditional Random Fields
�e f weights for a �xed f but for di�erent input positions receive all
the same weight. �erefore we can sum them up before weighting.

From class features to sequence features

F(y,x) =
n

∑

i=1
f (yi−1,yi,x, i)

Assume that we have features f1, . . . , fk , which yield sequence
features F1, . . . , Fk .

We weight these and apply them exactly as in the MaxEnt case:

Conditional class sequence probability
Let λj be the weight of features Fj .

P(y∣x) =
e∑

k
i=1 λiFi(y,x)

∑y′∈Cn e∑k
i=1 λiFi(y′,x)
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Conditional Random Fields
CRF – POS tagging
Assume that we have POS tags Det, N, Adv, V and features

f1(yi−1,yi,x, i) = {
1 if xi =“chief” and yi−1 =Det and yi =Adj
0 otherwise

f2(yi−1,yi,x, i) = {
1 if xi =“chief” and yi =N
0 otherwise

f3(yi−1,yi,x, i) = {
1 if xi =“talks” and yi−1 =Det and yi =N
0 otherwise

f4(yi−1,yi,x, i) = {
1 if xi =“talks” and yi−1 =Adj and yi =N
0 otherwise

f5(yi−1,yi,x, i) = {
1 if xi =“talks” and yi−1 =N and yi =V
0 otherwise

f6(yi−1,yi,x, i) = {
1 if xi =“the” and yi =Det
0 otherwise

Weights: λ1 = 2, λ2 = 5, λ3 = 9, λ4 = 8, λ5 = 7, λ6 = 20.
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Conditional Random Fields

CRF – POS tagging
Assume that we have a sequence “the chief talks”. Which of the
following probabilities is higher? P(Det N V ∣ the chief talks) or
P(Det Adj N ∣ the chief talks)?

Weighted feature sums for both:

1 Det N V : 20 + 5 + 7 = 32
2 Det Adj N : 20 + 2 + 8 = 30

Consequently, Det N V has a slightly higher probability.

(In real applications, we have of course many more features.)
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E�cient computation

In the following, we assume chain-structured CRF (see example). Let
x be our input sequence of length n. We have features f1, . . . fk . Each
label sequence is augmented with an initial start and a �nal end.
Let C be the set of class labels.

We de�ne a set of C × C matrices M1(x), M2(x), . . .Mn+1(x) where
for all i, 1 ≤ i ≤ n + 1 and all classes c, c′:

Mi(c, c′) = e∑
k
j=1 λj fj(c,c′,x,i)

With this, we can compute

P(y∣x) =
1
Z

n+1
∏

i=1
Mi(yi−1,yi)
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E�cient computation

In order to obtain the probability, we have to compute
Z = ∑y′∈Cn e∑

k
j=1 λjFj(y′,x)

As in the HMM case, we can use the forward-backward algorithm in
order to compute this e�ciently.

We compute αi(c) = ∑y′∈Ci−1 e∑
k
j=1 λjFj(y′,x) in a way similar to the

HMM foward computation:

Forward computation
1 α0(c) = 1 if c = start, else α0(c) = 0.
2 αi(c) = ∑c′∈C αi−1(c′)Mi(c′, c) for 1 ≤ i ≤ n
3 Z = ∑c∈C αn(c)
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E�cient computation
Probability calculation in CRF
C = {A,B}, x = abb. Features fc,c′,x and their weights:
fs,A,a ∶ 2 fA,A,b ∶ 1 fB,A,b ∶ 0.3
fs,B,a ∶ 0.5 fA,B,b ∶ 2 fB,B,b ∶ 4
start 1
A 0 e2 e2e1 + e0.5e0.3 = 22.31 22.31e1 + 144.62e0.3
B 0 e0.5 e2e2 + e0.5e4 = 144.62 22.31e2 + 144.62e4

0 1 2 3

Z = 255.86 + 8060.83 = 8316.69

P(AAA∣abb) = e2+1+1
8316.69 = 0.0066 P(BBB∣abb) = e0.5+4+4

8316.69 = 0.59

P(ABB∣abb) = e2+2+4
8316.69 = 0.39 P(BAB∣abb) = e0.5+0.3+2

8316.69 = 0.002

P(BBA∣abb) = e0.5+4+0.3
8316.69 = 0.015 P(AAB∣abb) = e2+1+2

8316.69 = 0.018

P(ABA∣abb) = e2+2+0.3
8316.69 = 0.009 P(BAA∣abb) = e0.5+0.3+1

8316.69 = 0.0007
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E�cient computation

In order to obtain the best class sequence, we can use the viterbi
algorithm:

Viterbi for CRF
1 v0(c) = 1 if c = start, else v0(c) = 0.
2 vi(c) = maxc′∈C(vi−1(c′)Mi(c′, c)) for 1 ≤ i ≤ n

If we keep additional backpointers to the c′ that has lead to the
maximal value, we can read o� the best class sequence, starting from
the maximal value vn(c) we have for any of the classes c. If this best
class for n is c, the probability of the best class sequence is

vn(c)
Z

=

vn(c)
∑c∈C αn(c)
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E�cient computation

Classi�cation in CRF
C = {A,B}, x = abb. Features fc,c′,x and their weights:
fs,A,a ∶ 2 fA,A,b ∶ 1 fB,A,b ∶ 0.3
fs,B,a ∶ 0.5 fA,B,b ∶ 2 fB,B,b ∶ 4
start 1
A 0 e2, start e2e1, A e4.5e0.3, B
B 0 e0.5, start e0.5e4, B e4.5e4, B

0 1 2 3

Best class sequence: BBB, probability e8.5
8316.69 = 0.59
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Features
In general, we can have any type of features depending on the entire
input sequence, the position i, and the classes of xi and xi−1.

Relaxed independence assumptions compared to HMM.

Shallow parsing Sha & Pereira (2003)
Shallow parsing: identify chunks (= non-recursive noun phrases)
without analyzing their internal structure.

�e chunker assigns a chunk label B, I or O (begin of chunk, inside
chunk, outside chunk) to each word.

�e CRF classi�er assigns a pair of chunk labels to a word xi,
namely the concatenation of the chunk labels of xi−1 and of xi.

All features f (yi−1,yi,x, i) are indicator functions, indicating that

some predicate p(x, i) holds and
some predicate q(yi−1,yi) holds.
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Features
Shallow parsing Sha & Pereira (2003)

Sample predicates p(x, i):
xi+2 = w,
xi−1 = w,xi = w′,
POS(xi−1) = t,POS(xi) = t′,
. . .

Sample predicates q(yi−1,yi):
yi = cc′ (c, c′ are the labels assigned by the chunker),
yi−1 = cc′,yi = c′c′′,
yi = xc′ where x can be any label,
. . .

(w,w′ are speci�c words, t, t′ speci�c POS tags and c, c′, c′′ speci�c
labels from {B, I ,O}.)

In total, Sha & Pereira (2003) use 3,8 million features.

20 / 21



References

Finkel, Jenny Rose, Trond Grenager & Christopher Manning. 2005. Incorporating
non-local information into information extraction systems by gibbs sampling. In
Proceedings of the 43rd annual meeting on association for computational linguistics
ACL ’05, 363–370. Stroudsburg, PA, USA: Association for Computational
Linguistics. doi:10.3115/1219840.1219885.
http://dx.doi.org/10.3115/1219840.1219885.

La�erty, John, Andrew McCallum & Fernando Pereira. 2001. Conditional random
�elds: probabilistic models for segmenting and labeling sequence data. In
International conference on machine learning, .

Ratnaparkhi, Adwait. 1997. A simple introduction to maximum entropy models for
natural language processing. Tech. Rep. 97–08 Institue for Research in Cognitive
Science, University of Pennsylvania.

Samih, Younes & Wolfgang Maier. 2016. Detecting code-switching in moroccan
arabic. In Proceedings of SocialNLP @ IJCAI-2016, New York. To appear.

Sha, Fei & Fernando Pereira. 2003. Shallow parsing with conditional random �elds.
In Proceedings of human language technology, naacl, .

Wallach, Hana M. 2002. E�cient training of conditional random �elds: University of
Edinburgh dissertation.

Wallach, Hana M. 2004. Conditional random �els: An introduction. Tech. rep.
University of Pennsylvania. Technical Report (CIS), Paper 22.

21 / 21

http://dx.doi.org/10.3115/1219840.1219885

	Motivation
	Conditional Random Fields
	Efficient computation
	Features

