syntactic trees. Mildly Context-Sensitive Grammar $\mathrm{S} \to \mathrm{NP} \ \mathrm{VP} \qquad \swarrow \\ \mathrm{NP} \ \mathrm{VP} \qquad \mathrm{VP}$ Formalisms: $VP \rightarrow V NP$ $\bigvee_{V NP}^{VP}$ **Tree Substitution Grammars** • From a linguistic point of view, in particular in a lexicalized Laura Kallmeyer grammar, we would like entire constructions to be our Heinrich-Heine-Universität Düsseldorf elementary building blocks. Sommersemester 2011 NF likes Grammar Formalisms 1 Tree Substitution Grammars Grammar Formalisms 3 Tree Substitution Grammars Sommersemester 2011 Kallmeyer Sommersemester 2011 Kallmeyer Tree Substitution Grammars (1) This leads to the definition of Tree Substitution Grammars (TSG). • A TSG consists of a set of syntactic trees. • From these trees, larger trees can be built by replacing a Overview non-terminal leaf with a new tree whose root node is labeled 1. Motivation with the same non-terminal. 2. Tree Substitution Grammars • This operation is called substitution. 3. Equivalence of CFG and TSG

4. Applications

2

Grammar Formalisms

Motivation

• In a CFG, the elements in the grammars represent very small

Tree Substitution Grammars

4

Tree Substitution Grammars (2)

Definition 1 (Substitution)

Let $\gamma = \langle V, E, r \rangle$ and $\gamma' = \langle V', E', r' \rangle$ be syntactic trees with $V \cap V' = \emptyset$ and $v \in V$. $\gamma[v, \gamma']$, the result of substituting γ' into γ at node v is defined as follows:

- if v is not a leaf or $l(v) \neq l(r')$, then $\gamma[v, \gamma']$ is undefined;
- otherwise, $\gamma[v, \gamma'] = \langle V'', E'', r'' \rangle$ with $V'' = V \cup V' \setminus \{v\}$ and $E'' = (E \setminus \{\langle v_1, v_2 \rangle | v_2 = v\}) \cup E' \cup \{\langle v_1, r' \rangle | \langle v_1, v \rangle \in E\}.$ Furthermore, $v_1 \prec v_2$ in $\gamma[v, \gamma']$ iff either $v_1 \prec v_2$ in γ or $v_1 \prec v_2$ in γ' or $v_1 \in V'$ and $v \prec v_2$ in γ or $v_2 \in V'$ and $v_1 \prec v$ in γ .

A leaf that has a non-terminal label is called a substitution node.

Grammar Formalisms	5	Tree Substitution Grammars
Kallmeyer		Sommersemester 2011
Tree Substitution G	rammars (3)	
	S	

likes

6

NP

John

Tree Substitution Grammars (4)

Definition 2 (Tree Substitution Grammar)

A Tree Substitution Grammar (TSG) is a tuple $G = \langle N, T, S, I \rangle$ where

- N,T are disjoint alphabets of non-terminal and terminal symbols,
- $S \in N$ is the start symbol,
- I is a finite set of syntactic trees with labels from N and T.

Every tree in I is called an elementary tree.

G is called lexicalized if every tree in I has at least one leaf with a label from T.

7

Grammar Formalisms

Tree Substitution Grammars

Sommersemester 2011

Kallmeyer		

Tree Substitution Grammars (5)

For a syntactic tree $\gamma = \langle V, E, r \rangle$ with node labeling functions l, we call $\langle V', E', r' \rangle$ with labeling functions l' an instance of γ if there exists a bijective function $h: V \to V'$ such that

8

- for all $v_1, v_2 \in V$: $\langle v_1, v_2 \rangle \in E$ iff $\langle h(v_1), h(v_2) \rangle \in E'$;
- for all $v_1, v_2 \in V$: $v_1 \prec v_2$ in γ iff $h(v_1) \prec h(v_2)$ in γ' ;
- for all $v \in V$: l(v) = l'(h(v));

In other words, the two trees are isomorphic.



Tree Substitution Grammars

girl

Det | the

Grammar Formalisms

Tree Substitution Grammars

Tree Substitution Grammars (6)

In a derivation step, we select a node with a non-terminal label A, we pick a fresh instance of an elementary tree with root label Afrom the grammar and we substitute the node for the new tree.

Definition 3 (TSG derivation)

Let
$$G = \langle N, T, S, I \rangle$$
 be a TSG.

1. Let $\gamma = \langle V, E, r \rangle$ and γ' be syntactic trees.

 γ' can be derived from γ in a single step, $\gamma \Rightarrow \gamma'$ if there is a node $v \in V$ and there is an instance $\gamma_e = \langle V_e, E_e, r_e \rangle$ of a tree from I such that

- $V \cap V_e = \emptyset$ (i.e., the node sets are disjoint),
- $\gamma' = \gamma[v, \gamma_e]$ (i.e., γ' is the result of substituting v for γ_e).

9

2. $\stackrel{*}{\Rightarrow}$ is as usual the reflexive transitive closure of \Rightarrow .

Formalisms

Tree Substitution Grammars

Kallmeyer

Sommersemester 2011

Tree Substitution Grammars (7)

Definition 4 (TSG language)

Let $G = \langle N, T, S, I \rangle$ be a TSG.

- We call a tree γ that can be derived from an instance of an elementary tree γ_e ∈ I a derived tree in G.
- 2. The tree language of G is the set of all derived trees $\gamma = \langle V, E, r \rangle$ in G such that
 - l(r) = S, and
 - $l(v) \in T \cup \{\varepsilon\}$ for every leaf $v \in V$.
- 3. For every tree γ with v_1, \ldots, v_n being the leaves in γ ordered form left to right, we define yield $(\gamma) = l(v_1) \cdots l(v_n)$.
- 4. The string language of G is $\{w \mid \text{there is a } \gamma \in L_T(G) \text{ such that } w = yield(\gamma)\}.$

10

Grammar	Formalisms	
---------	------------	--

Tree Substitution Grammars

Equivalence of TSGs and CFGs (1)

In spite of the larger domains of locality, the following holds:

Proposition 1 (Equivalence of CFG and TSG) *CFG and TSG are weakly equivalent. Furthermore, except for some relabeling of the nodes, they are even strongly equivalent.*

- Every CFG can be immediately written as a TSG with every production being understood as a tree with a single root and a daughter for every righthand side symbol
- In order to construct an equivalent CFG for a given TSG, we have to encode the dependencies between nodes from the same tree within the non-terminal symbols.

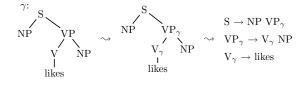
11

Grammar Formalisms

Tree Substitution Grammars

Sommersemester 2011

Equivalence of TSGs and CFGs (2)



Grammar Formalisms 12 Tree Substitution Grammars

Applications

Even though TSGs are almost strongly equivalent to CFGs, they offer an extended domain of locality. This enables them to capture more generalizations than CFGs do.

- TSGs are used in the context of data-oriented parsing (DOP) [Bod et al., 2003].
- Lexicalized TSGs can be extracted from treebanks and used for probabilistic parsing [Post and Gildea, 2009].
- [Cohn et al., 2009] also induce Probabilistic Tree Substitution Grammars from treebanks and use them successfully for parsing.

13

Tree Substitution Grammars

Kallmeyer

Sommersemester 2011

References

[Bod et al., 2003] Bod, R., Scha, R., and Sima'a, K., editors (2003). Data-Oriented Parsing. CSLI Publications, Stanford.

[Cohn et al., 2009] Cohn, T., Goldwater, S., and Blunsom, P. (2009). Inducing compact but accurate tree-substitution grammars. In *Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL*, pages 548–556, Boulder, Colorado.

[Post and Gildea, 2009] Post, M. and Gildea, D. (2009). Bayesian learning of a tree substitution grammar. In *Proceedings of the ACL-IJCNLP 2009 Conference Short Papers*, pages 45–48, Singapore.

Grammar Formalisms 14 Tree Substitution Grammars