Mildly Context-Sensitive Grammar
 Formalisms:

Tree Adjoining Grammar Parsing

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf
Sommersemester 2011

Grammar Formalisms	1	TAG Parsing

Overview

1. A CYK recognizer for TAG
(a) Items
(b) Inference rules
(c) Complexity
2. Earley Parsing for TAG
(a) Introduction
(b) Items
(c) Inference rules

CYK: Items (1)
CYK-Parsing for TAG

- First presented in [Vijay-Shanker and Joshi, 1985], formulation with deduction rules in [Kallmeyer and Satta, 2009].
- Assumption: elementary trees are such that each node has at most two daughters. (Any TAG can be transformed into an equivalent TAG satisfying this condition.)
- The algorithm simulates a bottom-up traversal of the derived tree.

Grammar Formalisms	3	TAG Parsing

CYK: Items (2)

- At each moment, we are in a specific node in an elementary tree and we know about the yield of the part below. Either there is a foot node below, then the yield is separated into two parts. Or there is no foot node below and the yield is a single substring of the input.
- We need to keep track of whether we have already adjoined at the node or not since at most one adjunction per node can occur. For this, we distinguish between a bottom and a top position for the dot on a node. Bottom signifies that we have not performed an adjunction

CYK: Items (3)

Item form: $\left[\gamma, p_{t}, i, f_{1}, f_{2}, j\right]$ where

- $\gamma \in I \cup A$,
- p is the Gorn address of a node in $\gamma(\epsilon$ for the root, $p i$ for the i th daughter of the node at address p),
- subscript $t \in\{\top, \perp\}$ specifies whether substitution or adjunction has already taken place (T) or not (\perp) at p, and
- $0 \leq i \leq f_{1} \leq f_{2} \leq j \leq n$ are indices with i, j indicating the left and right boundaries of the yield of the subtree at position p and f_{1}, f_{2} indicating the yield of a gap in case a foot node is dominated by p. We write $f_{1}=f_{2}=-$ if no gap is involved.

Grammar Formalisms	5	TAG Parsing

CYK: Inference rules (1)

Goal items: $\left[\alpha, \epsilon_{\mathrm{T}}, 0,-,-, n\right]$ where $\alpha \in I$

We need two rules to process leaf nodes while scanning their labels, depending on whether they have terminal labels or labels ϵ :

```
Lex-scan: \(\overline{\left[\gamma, p_{\top}, i,-,-, i+1\right]} l(\gamma, p)=w_{i+1}\)
Eps-scan: \(\frac{}{\left[\gamma, p_{\top}, i,-,-, i\right]} l(\gamma, p)=\epsilon\)
```

(Notation: $l(\gamma, p)$ is the label of the node at address p in γ.)

CYK: Inference rules (2)

Lex-scan

Eps-scan

CYK: Inference rules (3)

The rule foot-predict processes the foot node of auxiliary trees $\beta \in A$ by guessing the yield below the foot node:

Foot-predict: $\frac{}{\left[\beta, p_{T}, i, i, j, j\right]} \beta \in A, p$ foot node address in $\beta, i \leq j$

CYK: Inference rules (4)

When moving up inside a single elementary tree, we either move from only one daughter to its mother, if this is the only daughter, or we move from the set of both daughters to the mother node:

Move-unary:

$\frac{\left[\gamma,(p \cdot 1)_{\mathrm{T}}, i, f_{1}, f_{2}, j\right]}{\left[\gamma, p_{\perp}, i, f_{1}, f_{2}, j\right]}$ node address $p \cdot 2$ does not exist in γ

Move-binary: $\frac{\left[\gamma,(p \cdot 1)_{\mathrm{T}}, i, f_{1}, f_{2}, k\right],\left[\gamma,(p \cdot 2)_{\mathrm{T}}, k, f_{1}^{\prime}, f_{2}^{\prime}, j\right]}{\left[\gamma, p_{\perp}, i, f_{1} \oplus f_{1}^{\prime}, f_{2} \oplus f_{2}^{\prime}, j\right]}$
$\left(f^{\prime} \oplus f^{\prime \prime}=f\right.$ where $f=f^{\prime}$ if $f^{\prime \prime}=-, f=f^{\prime \prime}$ if $f^{\prime}=-$, and f is undefined
otherwise)

Grammar Formalisms	9	TAG Parsing

Kallmeyer
CYK: Inference rules (5)
Move-unary:

CYK: Inference rules (6)

Move-binary:

Grammar Formalisms
11
TAG Parsing

CYK: Inference rules (7)

For nodes that do not require adjunction, we can move from the bottom position of the node to its top position.

Null-adjoin: $\frac{\left[\gamma, p_{\perp}, i, f_{1}, f_{2}, j\right]}{\left[\gamma, p_{\top}, i, f_{1}, f_{2}, j\right]} f_{O A}(\gamma, p)=0$

CYK: Inference rules (8)
The rule substitute performes a substitution:
Substitute: $\frac{\left[\alpha, \epsilon_{\mathrm{T}}, i,-,-, j\right]}{\left[\gamma, p_{\mathrm{T}}, i,-,-, j\right]} l(\alpha, \epsilon)=l(\gamma, p)$

\sim

Grammar Formalisms
13
TAG Parsing

CYK: Inference rules (9)

The rule adjoin adjoins an auxiliary tree β at p in γ, under the
precondition that the adjunction of β at p in γ is allowed:
Adjoin: $\frac{\left[\beta, \epsilon_{\mathrm{T}}, i, f_{1}, f_{2}, j\right],\left[\gamma, p_{\perp}, f_{1}, f_{1}^{\prime}, f_{2}^{\prime}, f_{2}\right]}{\left[\gamma, p_{\mathrm{T}}, i, f_{1}^{\prime}, f_{2}^{\prime}, j\right]} \beta \in f_{S A}(\gamma, p)$

CYK: Inference rules (10)

Adjoin:

\leadsto

Grammar Formalisms

CYK: Complexity

Complexity of the algorithm: What is the upper bound for the number of applications of the adjoin operation?

- We have $|A|$ possibilities for $\beta,|A \cup I|$ for γ, m for p where m is the maximal number of internal nodes in an elementary tree.
- The six indices $i, f_{1}, f_{1}^{\prime}, f_{2}^{\prime}, f_{2}, j$ range from 0 to n.

Consequently, adjoin can be applied at most $|A||A \cup I| m(n+1)^{6}$
times and therefore, the time complexity of this algorithm is $\mathcal{O}\left(n^{6}\right)$.

Earley: Introduction (1)

- Left-to-right CYK parser very slow: $\mathrm{O}\left(n^{6}\right)$ worst case and best case (just as in CFG version of CYK, to many partial trees not pertinent to the final tree are produced).
- Behaviour is due to pure bottom-up approach, no predictive information whatsoever is used.
- Goal: Earley-style parser! First in [Schabes and Joshi, 1988]. Here, we present the algorithm from [Joshi and Schabes, 1997].

We assume a TAG without substitution nodes.

Grammar Formalisms	17	TAG Parsing

Earley: Introduction (2)

- Earley Parsing: Left-to-right scanning of the string (using predictions to restrict hypothesis space)
- Traversal of elementary trees, current position marked with a dot.

The dot can have exactly four positions with respect to the node: left above (la), left below (lb), right above (ra), right below (rb).

Earley: Introduction (3)

General idea: Whenever we are

- left above a node, we can predict an adjunction and start the traversal of the adjoined tree;
- left of a foot node, we can move back to the adjunction site and traverse the tree below it
- right of an adjunction site, we continue the traversal of the adjoined tree at the right of its foot node;
- right above the root of an auxiliary tree, we can move back to the right of the adjunction site

Grammar Formalisms	19	TAG Parsing

Earley: Items (1)

What kind of information do we need in an item characterizing a partial parsing result?

$$
[\alpha, \text { dot }, p o s, i, j, k, l, s a t ?]
$$

where

- $\alpha \in I \cup A$ is a (dotted) tree, dot and pos the address and location of the dot
- i, j, k, l are indices on the input string, where $i, l \in\{0, \ldots, n\}$, $j, k \in\{0, \ldots, n\} \cup\{-\}, n=|w|$, - means unbound value
- sat? is a flag. It controls (prevents) multiple adjunctions at a single node (sat? $=1$ means that something has already been adjoined to the dotted node)

Earley: Items (2)
What do the items mean?

- $[\alpha, d o t, l a, i, j, k, l, 0]$: In α part left of the dot ranges from i to l. If α is an auxiliary tree, part below foot node ranges from j to k.
- $[\alpha$, dot, lb, $i,-,-, i, 0]$: In α part below dotted node starts at position i.
- $[\alpha$, dot $, r b, i, j, k, l$, sat?]: In α part below dotted node ranges from i to l. If α is an auxiliary tree, part below foot node ranges from j to k. If $s a t ?=0$, nothing was adjoined to dotted node, sat? = 1 means that adjunction took place.
- $[\alpha, \operatorname{dot}, r a, i, j, k, l, 0]$: In α part left and below dotted node ranges from i to l. If α is an auxiliary tree, part below foot node ranges from j to k.
Grammar Formalisms $21 \quad$ TAG Parsing

Earley: Items (3)

Some notational conventions:

- We use Gorn addresses for the nodes: 0 is the address of the root, $i(1 \leq i)$ is the address of the i th daughter of the root, and for $p \neq 0, p \cdot i$ is the address of the i th daughter of the node at address p.
- For a tree α and a Gorn address dot, $\alpha(d o t)$ denotes the node at address $d o t$ in α (if defined).

Earley: Inference Rules (1)

ScanTerm $\frac{[\gamma, \operatorname{dot}, l a, i, j, k, l, 0]}{[\gamma, \operatorname{dot}, r a, i, j, k, l+1,0]} l(\gamma, d o t)=w_{l+1}$

Scan- $\varepsilon \frac{[\gamma, \operatorname{dot}, l a, i, j, k, l, 0]}{[\gamma, d o t, r a, i, j, k, l, 0]} l(\gamma, d o t)=\varepsilon$
Grammar Formalisms $23 \quad$ TAG Parsing

Earley: Inference Rules (2)

PredictAdjoinable $\frac{[\gamma, d o t, l a, i, j, k, l, 0]}{[\beta, 0, l a, l,-,-, l, 0]} \beta \in f_{S A}(\gamma, \operatorname{dot})$

\Rightarrow

PredictNoAdj $\frac{[\gamma, \operatorname{dot}, l a, i, j, k, l, 0]}{[\gamma, d o t, l b, l,-,-, l, 0]} f_{O A}(\gamma, d o t)=0$

Earley: Inference Rules (3)
PredictAdjoined

$$
\frac{[\beta, d o t, l b, l,-,-, l, 0]}{\left[\gamma, d o t^{\prime}, l b, l,-,-, l, 0\right]} d o t=\operatorname{foot}(\beta), \beta \in f_{S A}\left(\gamma, \operatorname{dot}^{\prime}\right)
$$

Grammar Formalisms	25	TAG Parsing

Kallmeyer

Earley: Inference Rules (4)

CompleteFoot

$$
\frac{[\gamma, d o t, r b, i, j, k, l, 0],\left[\beta, d o t^{\prime}, l b, i,-,-, i, 0\right]}{\left[\beta, d o t^{\prime}, r b, i, i, l, l, 0\right]} \quad \begin{aligned}
& \operatorname{dot^{\prime }=foot(\beta),} \begin{array}{l}
\beta \in f_{S A}\left(\gamma, d o t^{\prime}\right)
\end{array}
\end{aligned}
$$

Earley: Inference Rules (5)
CompleteNode
$\frac{[\gamma, d o t, l a, f, g, h, i, 0],[\gamma, d o t, r b, i, j, k, l, s a t ?]}{[\gamma, d o t, r a, f, g \oplus j, h \oplus k, l, 0]} l(\beta, d o t) \in N$

$w_{i+1} \ldots w_{l}$

$w_{f+1} \cdots w_{i}$

Grammar Formalisms
27
TAG Parsing

Kallmeyer

Earley: Inference Rules (6)

Adjoin
$\frac{[\beta, \varepsilon, r a, i, j, k, l, 0],[\gamma, d o t, r b, j, p, q, k, 0]}{[\gamma, d o t, r b, i, p, q, l, 1]} \beta \in f_{S A}(\gamma, p)$

sat $?=1$ prevents the new item from being reused in another Adjoin application.

Earley: Inference Rules (7)

Move the dot to daughter/sister/mother:
MoveDown: $\frac{[\gamma, d o t, l b, i, j, k, l, 0]}{[\gamma, d o t \cdot 1, l a, i, j, k, l, 0]} \gamma(d o t \cdot 1)$ is defined
MoveRight: $\frac{[\gamma, d o t, r a, i, j, k, l, 0]}{[\gamma, d o t+1, l a, i, j, k, l, 0]} \gamma(\operatorname{dot}+1)$ is defined

MoveUp: $\frac{[\gamma, d o t \cdot m, r a, i, j, k, l, 0]}{[\gamma, d o t, r b, i, j, k, l, 0]} \gamma(d o t \cdot m+1)$ is not defined

Grammar Formalisms	29	TAG Parsing

Kallmeyer

Earley: Inference Rules (8)

Initialize: $\frac{}{[\alpha, \varepsilon, l a, 0,-,-, 0,0]} \alpha \in I, l(\alpha, \varepsilon)=S$

Goal item: $[\alpha, 0, r a, 0,-,-, n, 0], \alpha \in I$

Earley: The Valid Prefix Property (VPP) (1)

- The Earley algorithm, as presented, does not have the VPP.
- In other words, there are items which are not part of a derivation from an initial α with the span of the derived tree up to the dotted node being a prefix of a word in the language.

Grammar Formalisms	31	TAG Parsing

Earley: The Valid Prefix Property (VPP) (2)

Example:

Every word in the language starts with d.

Earley: The Valid Prefix Property (VPP) (3)

Input bccc leads (among others) to the following items:

	Item	Rule
1.	$[\alpha, \varepsilon, l a, 0,-,-, 0,0]$	initialize
2.	$[\beta, \varepsilon, l a, 0,-,-, 0,0]$	predictAdjoinable from 1.
	\ldots	
3.	$[\beta, 1, l b, 0,-,-, 0,0]$	
4.	$[\alpha, 2, l b, 0,-,-, 0,0]$	predictAdjoined from 3.
	\ldots	
5.	$[\alpha, 2, r b, 0,-,-, 1,0]$	
6.	$[\beta, 1, r b, 0,0,1,1,0]$	completeFoot form 3. and 5.
	\ldots	
7.	$[\beta, \varepsilon, r a, 0,0,3,4,0]$	(after repeated adjunctions of β)
8.	$[\alpha, 2, r b, 0,-,-, 4,1]$	adjoin from 7. and 4.

Grammar Formalisms
33
TAG Parsing

Earley: The Valid Prefix Property (VPP) (4)

- Reason for lack of VPP: neither predictAdjoined nor completeFoot nor adjoin check for the existence of an item that has triggered the prediction of this adjunction.
- Maintaining the VPP leads to deduction rules with more indices. It was therefore considered to be costly: $\mathcal{O}\left(n^{9}\right)$ [Schabes and Joshi, 1988].
- But: in some rules, some of the indices are not relevant for the rule and can be factored out (treated as "don't care"-values). Therefore, a $\mathcal{O}\left(n^{6}\right)$ VPP Earley algorithm is actually possible [Nederhof, 1997].

References

[Joshi and Schabes, 1997] Joshi, A. K. and Schabes, Y. (1997). Tree-Adjoning Grammars. In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69-123. Springer, Berlin.
[Kallmeyer and Satta, 2009] Kallmeyer, L. and Satta, G. (2009). A polynomial-time parsing algorithm for tt-mctag. In Proceedings of $A C L$, Singapore.
[Nederhof, 1997] Nederhof, M.-J. (1997). Solving the correct-prefix property for TAGs. In Becker, T. and Krieger, H.-U., editors, Proceedings of the Fifth Meeting on Mathematics of Language, pages 124-130, Schloss Dagstuhl, Saarbrücken.
[Schabes and Joshi, 1988] Schabes, Y. and Joshi, A. K. (1988). An Earley-type parsing algorithm for Tree Adjoining Grammars. In

Grammar Formalisms	35	TAG Parsing

Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics, pages 258-269.
[Vijay-Shanker and Joshi, 1985] Vijay-Shanker, K. and Joshi A. K. (1985). Some computational properties of Tree Adjoining Grammars. In Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics, pages 82-93.

