Mildly Context-Sensitive Grammar Formalisms:

Mild Context-Sensitivity

Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

2

Mild Context-Sensitivity (1)

- We know that CFGs are not powerful enough to describe all natural language phenomena.
- Question: How much context-sensitivity is necessary to deal with natural languages?
- In an attempt to characterize the amount of context-sensitivity required, [Joshi, 1985] introduced the notion of mild context-sensitivity (MCS).
- MCS is a term that refers to classes of languages, not to formalisms.

4

Grammar Formalisms	1	Mild Context-Sensitivity	Grammar Formalisms	3	Mild Context-Sensitivity
Kallmeyer		Sommersemester 2011	Kallmeyer		Sommersemester 2011
			Mild Context-Sensitiv	ity (2)	
			1. A set \mathcal{L} of languages	is mildly context-	sensitive iff
			(a) \mathcal{L} contains all con-	text-free language	es.
Overview			(b) \mathcal{L} can describe a l	imited amount of	cross-serial
1. Mild Context-Sensit	ivity		(a) The languages in	Caro polynomial	ly perceble i e
2. Cross-Serial Depend	lencies		(c) The languages in $\mathcal{L} \subset PTIME.$	L are polynomia	ly parsable, i.e.,
3. Constant Growth			(d) The languages in .	\mathcal{L} have the <i>consta</i>	ant growth property.
4. Semilinearity			2. A formalism F is mil	dly context-sensit	tive iff the set
5. MCS and TAG			$\{L \mid L = L(G) \text{ for some grammar } G \text{ of the formalism } F\}$ is mildly context-sensitive.		

Grammar Formalisms

Mild Context-Sensitivity

Grammar Formalisms

Mild Context-Sensitivity

Cross-Serial Dependencies

The second property (limited amount of cross-serial dependencies) is a little unclear. It can be taken to mean the following:

There is an $n \ge 2$ such that $\{w^k \mid w \in T^*\} \in \mathcal{L}$ for all $k \le n$.

Constant Growth (2)

How can we show the constant growth property for a given language?

- Via a pumping lemma. The maximal size of the pumped material is the maximal length difference we encounter in the language.
- Via letter-equivalence with a context-free language. This shows the semilinearity of the language, a property that is stronger than constant growth.

Grammar Formalisms	5	Mild Context-Sensitivity	Grammar Formalisms	7	Mild Context-Sensitivity
Kallmeyer		Sommersemester 2011	Kallmeyer		Sommersemester 2011
Constant Growth (1)	1		Constant Growth (3)		
The constant growth property roughly means that, if we order the		Example: Pumping Lemma for a CFL L: There is a $c > 0$ such			
words of a language according to their length, then the length		that for all $w \in L$ with $ w \ge c$: $w = xv_1yv_2z$ with			
grows in a linear way.			• $ v_1v_2 > 1$,		

Example: $\{a^{2^n} \mid n \ge 0\}$ is not of constant growth.

The following definition is from [Weir, 1988].

Definition 1 (Constant Growth Property) Let X be an alphabet and $L \subseteq X^*$. L has the constant growth property iff there is a constant $c_0 > 0$ and a finite set of constants $C \subset \mathbb{N} \setminus \{0\}$ such that for all $w \in L$ with $|w| > c_0$, there is a $w' \in L$ with |w| = |w'| + c for some $c \in C$.

6

Grammar Formalisms

Mild Context-Sensitivity

- $|v_1yv_2| \leq c$, and
- for all $i \ge 0$: $xv_1^i yv_2^i z \in L$.

Consequently, L is of constant growth with $c_0 = c$ and $C = \{1, 2, \dots, c\}.$

8 Grammar Formalisms

Mild Context-Sensitivity

Semilinearity (1)

 $Semilinearity \ensuremath{\mathsf{is}}$ s language property that is stronger than constant-growth.

- Constant growth is only an existential property: For a language to be of constant growth, it is enough to have an infinite sequence w₁, w₂,... in the language with |w_{i+1}| |w_i| ≤ c. Besides this, there can be other words in the language that arise from some exponential process. {cⁿdⁿ | n ≥ 0} ∪ {a^{2ⁿ} | n ≥ 0} is of constant growth.
- Semilinearity is a universal property: every word in the language is part of a sequence where the counts of the different terminals in these words are linear combinations of specific initial counts.

9

$$\begin{split} & \{c^n d^n \, | \, n \geq 0\} \cup \{a^{2^n} \, | \, n \geq 0\} \text{ is not semilinear.} \\ & \{a^n b^n \, | \, n \geq 0\} \cup \{(aa)^n b^n \, | \, n \geq 0\} \text{ is semilinear.} \end{split}$$

Grammar Formalisms

Mild Context-Sensitivity

Kallmeyer

Sommersemester 2011

Semilinearity (2)

First, we introduce Parikh mappings. These are functions that count for each letter of an (ordered) alphabet the occurrences of this letter in a word w.

Example: w = aababaab, a the first letter and b the second of the alphabet. Parikh image of w: $\langle |w|_a, |w|_b \rangle = \langle 5, 3 \rangle$.

Definition 2 (Parikh mapping) Let $X = \{a_1, \ldots, a_n\}$ be an alphabet with a fixed order of the elements. The Parikh mapping $p: X^* \to \mathbb{N}^n$ is defined as follows:

- For all w ∈ X*: p(w) := ⟨|w|_{a1},...,|w|_{an}⟩ where |w|_{ai} is the number of occurrences of a_i in w.
- For all languages $L \subseteq X^* : p(L) := \{p(w) \mid w \in L\}$ is the Parikh image of L.

10

Mild Context-Sensitivity

Semilinearity (3)

Two words are *letter equivalent* if they contain equal number of occurrences of each terminal symbol, and two languages are letter equivalent if every string in one language is letter equivalent to a string in the other language and vice-versa.

Ex.: $\{ww\,|\,w\in\{a,b\}^*\}$ and $\{ww^R\,|\,w\in\{a,b\}^*\}$ are letter equivalent.

Definition 3 (Letter equivalent) Let X be an alphabet.

- Two words w₁, w₂ ∈ X* are letter equivalent if there is a Parikh mapping p such that p(w₁) = p(w₂).
- 2. Two languages $L_1, L_2 \subseteq X^*$ are letter equivalent if there is a Parikh mapping p such that $p(L_1) = p(L_2)$.

11

Grammar Formalisms

Mild Context-Sensitivity

Kallmever

Sommersemester 2011

Semilinearity (4)

We define for $\langle a_1, \ldots, a_n \rangle, \langle b_1, \ldots, b_n \rangle \in \mathbb{N}^n$ and $m \in \mathbb{N}$ that

- $\langle a_1, \ldots, a_n \rangle + \langle b_1, \ldots, b_n \rangle := \langle a_1 + b_1, \ldots, a_n + b_n \rangle$, and
- $m\langle a_1,\ldots,a_n\rangle := \langle ma_1,\ldots,ma_n\rangle.$

A language is semilinear if its Parikh imgage is the union of finitely many linear sets.

Ex.: $\{a^n b^n \mid n \ge 0\} \cup \{b^n c^n \mid n \ge 0\}, a$ the first, b the second and c the third terminal.

 $\begin{aligned} \text{Parikh image:} \\ \{ \langle 0,0,0\rangle + n \langle 1,1,0\rangle \, | \, n \geq 0 \} \cup \{ \langle 0,0,0\rangle + n \langle 0,1,1\rangle \, | \, n \geq 0 \} \end{aligned}$

Grammar Formalisms 12 Mild Context-Sensitivity

Semilinearity (5)

- **Definition 4 (Semilinear)** 1. Let x_0, \ldots, x_m with $m \ge 0$ be in \mathbb{N}^n for some $n \ge 0$. The set $\{x_0 + n_1x_1 + \cdots + n_mx_m \mid n_i \in \mathbb{N} \text{ for } 1 \le i \le m\}$ is a linear subset of \mathbb{N}^n .
- The union of finitely many linear subsets of ℝⁿ is a semilinear subset of ℝⁿ.
- A language L ⊆ X* is semilinear iff there is a Parikh mapping p such that p(L) is a semilinear subset of Nⁿ for some n ≥ 0.

13

Grammar	Formalisms	

Mild Context-Sensitivity

Kallmeyer

Sommersemester 2011

Semilinearity (6)

Proposition 1 The constant growth property holds for semilinear languages.

Assume $L \subseteq X^*$ is semilinear and p(L) is a semilinear Parikh image of L where p(L) is the union of the linear sets M_1, \ldots, M_l . Then the constant growth property holds for L with

c_0	$:= max\{\sum_{i=1}^{n} y_i \mid$	there are x_1, \ldots, x_m such that
		$\{\langle y_1,\ldots,y_n\rangle+n_1x_1+\cdots+n_mx_m n_i\in\mathbb{N}\}$
		is one of the sets M_1, \ldots, M_l and

 $\begin{array}{ll} C & := \{ \Sigma_{i=1}^n y_i \, | & \mbox{there are } x_1, \ldots, x_m \mbox{ such that} \\ & & \{ x_1 + n_1 \langle y_1, \ldots, y_n \rangle + \cdots + n_m x_m \, | \, n_i \in \mathbb{N} \} \\ & \mbox{ is one of the sets } M_1, \ldots, M_l \}. \end{array}$

14

Semilinearity (7)

Parikh has shown that a language is semilinear if and only if it is letter equivalent to a regular language. The proof is given in [Kracht, 2003, p. 151]. As a consequence, we obtain that context-free languages are semilinear.

Proposition 2 (Parikh Theorem)

Each context-free language is semilinear [Parikh, 1966].

Furthermore, each language that is letter equivalent to a semilinear language is semilinear as well since the Parikh images of the two languages are equal. Therefore, in order to show the semilinearity (and constant growth) of a language, it is sufficient to show letter equivalence to a context-free language.

15

Grammar Formalisms

Mild Context-Sensitivity

Kallmeyer

Sommersemester 2011

Semilinearity (8)

Joshi's hypothesis that natural languages are mildly context-sensitive has been questioned only by two natural language phenomena that have been claimed to be non-semilinear:

- Case stacking in Old Georgian [Michaelis and Kracht, 1996]. The analyses of Old Georgian, however, are based on very few data since there are no speakers of Old Georgian today.
- Chinese number names [Radzinski, 1991]. It is however not totally clear to what extent this constitutes a syntactic phenomenon.

Therefore, even with these counterexamples, there is still good reason to assume that natural languages are mildly context-sensitive. Furthermore, non-semilinearity does not entail non-constant-growth.

Grammar Formalisms 16 Mild Context-Sensitivity

MCS and TAG (1)

The set ${\mathcal L}$ of all TALs

- $\bullet\,$ contains all CFLs,
- is a subset of PTIME (parsing is $\mathcal{O}(n^6)$),
- and contains the copy language, i.e., can generate a limited amount of cross-serial dependencies.

MCS and TAG (3)

Every TAL L is semilinear:

- Take the CFG that describes the set of derivation trees;
- Add to the righthand side of every production all terminals that label nodes in the elementary trees of the righthand side.

The result is a CFG that is letter equivalent to the original TAG.

Example: TAG for copy language, elementary trees α , β_a and β_b . Letter equivalent CFG:

19

$S \to \alpha$	$\alpha \to \varepsilon$	$\alpha \rightarrow a a \beta_a$	$\alpha \rightarrow bb\beta_b$
	$\beta_a \to \varepsilon$	$\beta_a \rightarrow a a \beta_a$	$\beta_a \rightarrow bb\beta_b$
	$\beta_b \to \varepsilon$	$\beta_b \to a a \beta_a$	$\beta_b \rightarrow bb\beta_b$

Grammar Formalisms

Kallmeyer

Mild Context-Sensitivity

Sommersemester 2011

References

- [Joshi, 1985] Joshi, A. K. (1985). Tree adjoining grammars: How much contextsensitivity is required to provide reasonable structural descriptions? In Dowty, D., Karttunen, L., and Zwicky, A., editors, *Natural Language Parsing*, pages 206–250. Cambridge University Press.
- [Kracht, 2003] Kracht, M. (2003). The Mathematics of Language. Number 63 in Studies in Generative Grammar. Mouton de Gruyter, Berlin.
- [Michaelis and Kracht, 1996] Michaelis, J. and Kracht, M. (1996). Semilinearity as a Syntactic Invariant. In Logical Aspects of Computational Linguistics, Nancy.
- [Parikh, 1966] Parikh, R. (1966). On context-free languages. Journal of the ACM, 13:570–581.

Grammar Formalisms 20 Mild Context-Sensitivity

Grammar Formalisms

Mild Context-Sensitivity

Kallmeyer

Sommersemester 2011

MCS and TAG (2)

Every TAL is of constant growth:

Pumping Lemma for a TAL L: There is a c>0 such that for all $w\in L$ with $|w|\geq c$ there are $x,y,z,v_1,v_2,w_1,w_2,w_3,w_4\in T^*$ such that

17

- $|v_1v_2w_1w_2w_3w_4| \le c$,
- $|w_1w_2w_3w_4| \ge 1$,
- $w = xv_1yv_2z$, and
- $xw_1^nv_1w_2^nyw_3^nv_2w_4^nz \in L(G)$ for all $n \ge 0$.

Consequently, L is of constant growth with $c_0 = 2c$ and $C = \{1, 2, ..., c\}.$

18

Grammar Formalisms

Mild Context-Sensitivity

[Radzinski, 1991] Radzinski, D. (1991). Chinese number-names, tree adjoining languages, and mild context-sensitivity. *Computational Linguistics*, 17:277–299.

[Weir, 1988] Weir, D. J. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, University of Pennsylvania.

Grammar Formalisms 21 Mild Context-Sensitivity