
Kallmeyer Sommersemester 2011

Mildly Context-Sensitive Grammar

Formalisms:

LMG and RCG

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

Grammar Formalisms 1 LMG and RCG

Kallmeyer Sommersemester 2011

Overview

1. Introduction

2. Literal Movement Grammar

3. Range Concatenation Grammar

Grammar Formalisms 2 LMG and RCG

Kallmeyer Sommersemester 2011

Introduction (1)

• So far, when dealing with LCFRS, we required the grammar to

be linear:

Every variable in the left-hand side of a rule appears exactly

once in its right-hand side and vice versa.

• If we drop this constraint, we obtain more general grammars.

• So far, it did not matter whether we instantiated the variables

with strings or ranges.

• If we drop linearity, this difference matters.

In Literal Movement Grammars, variables are instantiated with

strings, while in Range Concatenation Grammars, variables are

instantiated with ranges. In the latter, all range concatenations

must be possible with respect to some word in the language.

Grammar Formalisms 3 LMG and RCG

Kallmeyer Sommersemester 2011

Introduction (2)

Example:

• Grammar 1: rules

S(aXb) → B(XX), B(bX) → B(X), B(ε) → ε

RCG string language: {ab}

LMG string language: {abk | k ≥ 1}

• Grammar 2: rules

S(XY) → A(Xb)C(Y), A(ab) → ε, C(b) → ε, C(c) → ε

RCG string language: {ab}

LMG string language: {ab, ac}

Grammar Formalisms 4 LMG and RCG

Kallmeyer Sommersemester 2011

Introduction (3)

• Literal Movement Grammars were defined first, in

[Groenink, 1995, Groenink, 1996, Groenink, 1997] (see also

[Kracht, 2003] for an introduction to LMG).

• Range Concatenation Grammars were inspired by Groenink’s

work on LMG and were first defined in [Boullier, 1998a].

Grammar Formalisms 5 LMG and RCG

Kallmeyer Sommersemester 2011

Introduction (4)

LMGs and RCGs are straightforward generalizations of LCFRSs:

Definition 1 (LMG and RCG) A Range Concatenation

Grammar and Literal Movement Grammar is a tuple

G = 〈N, T, V, S, P 〉 such that

• N , T , V and S are defined as in an LCFRS;

• P is a finite set of clauses

A0(α01, . . . , α0a0
) → A1(α11, . . . , α1a1

) . . .An(αn1, . . . , αnan
)

with n ≥ 0 where Ai ∈ N, αij ∈ (T ∪ V)∗ and ai the arity of Ai.

Grammar Formalisms 6 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (1)

LMG variables are instantiated wrt. strings:

Definition 2 (LMG clause instantiation) Let

G = 〈N, T, V, S, P 〉 be a LMG.

For a rule c = A(~α) → A1(~α1) . . .Am(~αm) ∈ P , every function

f : {x | x ∈ V, x occurs in c} → T ∗ is an instantiation of c.

We call A(f(~α)) → A1(f(~α1)) . . .Am(f(~αm)) then an instantiated

clause where f is extended as follows:

1. f(ε) = ε;

2. f(t) = t for all t ∈ T ;

3. f(xy) = f(x)f(y) for all x, y ∈ T ∗;

4. f(〈α1, . . . , αm〉) = (〈f(α1), . . . , f(αm)〉) for all

(〈α1, . . . , αm〉) ∈ [(T ∪ V)∗]m, m ≥ 1.

Grammar Formalisms 7 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (2)

Ex.: LMG for LMIX = {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}

S(ε) → ε S(XaY) → A(XY)

A(XbY) → B(XY) B(XcY) → S(XY)

Possible rule instantiations for A(XbY) → B(XY):

• f(X) = ab, f(Y) = cc, ; A(abbcc) → B(abcc)

• f(X) = cba, f(Y) = c, ; A(cbabc) → B(cbac)

• f(X) = aaa, f(Y) = a, ; A(aaaba) → B(aaaa) (this one gets

never used in an actual derivation)

The string language is defined as for LCFRSs.

Grammar Formalisms 8 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (3)

Definition 3 (LMG string language) Let G = 〈N, T, V, S, P 〉

be a LMG.

1. The set Lpred(G) of instantiated predicates A(~τ) where A ∈ N

and ~τ ∈ (T ∗)k for some k ≥ 1 is defined by the following

deduction rules:

A(~τ)
A(~τ) → ε is an instantiated clause

A1(~τ1) . . .Am(~τm)

A(~τ)
A(~τ) → A1(~τ1) . . .Am(~τm) is an instantiated clause

2. The string language of G is

{w ∈ T ∗ |S(w) ∈ Lpred(G)}.

Grammar Formalisms 9 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (4)

Ex: Derivation of w = aabcbc (deduction of S(aabcbc))

S(ε)
S(ε) → ε

S(ε)

B(c)
B(XcY) → S(XY)

B(c)

A(bc)
A(XbY) → B(XY)

A(bc)

S(abc)
S(XaY) → A(XY)

S(abc)

B(abcc)
B(XcY) → S(XY)

B(abcc)

A(abcbc)
A(XbY) → B(XY)

A(abcbc)

S(aabcbc)
S(XaY) → A(XY)

Grammar Formalisms 10 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (5)

• The general definition of LMGs allows to have any combination

of variables and terminals in the components of the left-hand

side and the right-hand side of a clause.

• In particular, in the instantiated clauses, strings can be copied

or deleted and we can combine strings into new strings.

• If all this is disallowed, we obtain LCFRSs.

Grammar Formalisms 11 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (6)

Definition 4 (Linear Context-Free Rewriting Systems) A

LMG is

• non-combinatorial if for every clause c ∈ P , all the arguments

in the right-hand side of c are single variables.

• bottom-up (top-down) linear if for every c ∈ P , no variable

appears more than once in the left-hand (right-hand) side of c.

• linear if it is top-down and bottom-up linear.

• bottom-up (top-down) non-erasing if for every c ∈ P , each

variable occurring in the right-hand (left-hand) side of c occurs

also in its left-hand (right-hand) side.

• non-erasing if it is top-down and bottom-up non-erasing.

• a Linear Context-Free Rewriting System (LCFRS) if it is

non-combinatorial, linear and non-erasing.

Grammar Formalisms 12 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (7)

Other interesting LMGs are parallel multiple context-free

grammars (PMCFG) and simple LMGs:

Definition 5 (PMCFG) An LMG is a parallel multiple

context-free grammar (PMCFG) if it is non-combinatorial,

top-down non-erasing and top-down linear.

Ex.:

S(XXX) → A(X) A(aX) → A(X)

A(bX) → A(X) A(ε) → A(ε)

Grammar Formalisms 13 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (8)

Proposition 1 The set of string languages generated by PMCFGs

properly contains the set of LCFRLs.

Example of a PMCFG that generates a language that is not of

constant growth:

PMCFG for {a2
n

|n ≥ 0}:

S(a) → ε S(XX) → S(X)

Grammar Formalisms 14 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (9)

Definition 6 (Simple LMG)

An LMG is simple if it is non-combinatorial, bottom-up

non-erasing and bottom-up linear.

In other words, every variable in a clause occurs exactly once in its

left-hand side. Furthermore, the right-hand side components are

single variables.

Simple LMG for {a2
n

|n ≥ 0}:

S(XY) → S(X)eq(X, Y) S(a) → ε

eq(aX, aY) → eq(X, Y) eq(a, a) → ε

Grammar Formalisms 15 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (10)

Simple LMG for {(ambm)n |m, n ≥ 1}:

S(XY) → T (X, Y) T (X, ε) → A(X)

T (X, Y Z) → A(X)eq(X, Y)T (X, Z)

A(aXb) → A(X) A(ab) → ε

eq(aX, aY) → eq(X, Y) eq(bX, bY) → eq(X, Y) eq(ε, ε) → ε

Grammar Formalisms 16 LMG and RCG

Kallmeyer Sommersemester 2011

Literal Movement Grammars (11)

Simple LMGs generate the entire set of all polynomial languages:

Proposition 2 The set of string languages generated by simple

LMGs is exactly the class PTIME, i.e., the class of all polynomial

languages [Groenink, 1996].

PMCFGs are less powerful than simple LMGs. [Ljunglöf, 2005]

extends PMCFG with intersection, which leads to a formalism

equivalent to simple LMG.

Proposition 3

• For every PMCFG G, there is a simple LMG G′ such that

L(G) = L(G′).

• There exists a simple LMG G such that there is no PMCFG G

with L(G) = L(G′).

Grammar Formalisms 17 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (1)

Now we keep the syntax of the clauses but instantiate variables

with ranges with respect to a given string w. This leads to Range

Concatenation Grammars (RCGs)

[Boullier, 1998a, Boullier, 1998b, Boullier, 1999, Boullier, 2000].

Example:

S(X) → M(X, X, X)

M(bX, Y, Z) → M(X, Y, Z) M(cX, Y, Z) → M(X, Y, Z)

M(X, aY, Z) → M(X, Y, Z) M(X, cY, Z) → M(X, Y, Z)

M(X, Y, aZ) → M(X, Y, Z) M(X, Y, bZ) → M(X, Y, Z)

M(aX, bY, cZ) → M(X, Y, Z) M(ε, ε, ε) → ε

L(G) = MIX = {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}

Grammar Formalisms 18 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (2)

Definition 7 (Clause instantiation) Let G = (N, T, V, P, S) be

a RCG. For a given clause c = A0(~α0) → A1(~α1) · · · Am(~αm)

(0 ≤ m) and a string w = t1 . . . tn,

1. an instantiation of c with respect to w consists of a function

f : {t′ | t′ is an occurrence of some t ∈ T in the

clause} ∪ V ∪ {Epsi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai), ~αi(j) =

ε} → {〈i, j〉 | i ≤ j, i, j ∈ IN} such that

a) for all occurrences t′ of a t ∈ T in the clause,

f(t′) := 〈i, i + 1〉 for some i, 0 ≤ i < n such that ti = t,

b) for all X ∈ V , f(X) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n,

c) for all x, y adjacent in one of the elements of ~αi

(0 ≤ i ≤ m), there are l, j, r with f(x) = 〈l, j〉, f(y) = 〈j, r〉;

we then define f(xy) = 〈l, r〉,

d) for all

Grammar Formalisms 19 LMG and RCG

Kallmeyer Sommersemester 2011

Eps ∈ {Epsi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai), ~αi(j) = ε},

there is a k, 0 ≤ k ≤ n with f(Eps) = 〈k, k〉; we then define

for every ε-argument ~αi(j) that f(~αi(j)) = f(Epsi,j),

2. if f is an instantiation of c with respect to w, then A0(f(~α0))

→ A1(f(~α1)) · · ·Am(f(~αm)) is an instantiated clause where

f(〈x1, . . . , xk〉) = 〈f(x1), . . . , f(xk)〉.

Grammar Formalisms 20 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (3)

In each RCG derivation step, the left-hand side of an instantiated

clause is replaced by its right-hand side.

In other words, the set of instantiated rules with respect to some

given w is used as a CFG with start symbol S(〈〈0, |w|〉〉).

The string language of an RCG G is

L(G) = {w ∈ T ∗ |S(〈〈0, |w|〉〉)
∗

⇒ ε with respect to w}.

Grammar Formalisms 21 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (4)

Ex.: w = abc, RCG for the MIX language.

Derivation:

S(〈〈0, 3〉〉) → M(〈〈0, 3〉, 〈0, 3〉, 〈0, 3〉〉)

→ M(〈〈0, 3〉, 〈1, 3〉, 〈0, 3〉〉)

→ M(〈〈0, 3〉, 〈1, 3〉, 〈1, 3〉〉)

→ M(〈〈0, 3〉, 〈1, 3〉, 〈2, 3〉〉)

→ M(〈〈1, 3〉, 〈2, 3〉, 〈3, 3〉〉)

→ M(〈〈2, 3〉, 〈2, 3〉, 〈3, 3〉〉)

→ M(〈〈3, 3〉, 〈2, 3〉, 〈3, 3〉〉)

→ M(〈〈3, 3〉, 〈3, 3〉, 〈3, 3〉〉)

→ ε

Grammar Formalisms 22 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (5)

The definitions of combinatorial, linear and non-erasing are taken

over from LMGs.

Definition 8 (Simple Range Concatenation Grammar) An

RCG is simple if it is non-combinatorial, linear and non-erasing.

In the LCFRS/simple RCG case, it does not matter which string

language definition we adopt, the result is the same.

Proposition 4 LCFRS and simple RCG are equivalent.

Grammar Formalisms 23 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (6)

[Boullier, 1998a] shows the following:

Proposition 5

1. For any RCG, there is an equivalent non-combinatorial RCG.

2. For any non-combinatorial bottom-up erasing RCG, there is an

equivalent non-combinatorial bottom-up non-erasing RCG.

3. For any non-combinatorial bottom-up non-erasing top-down

erasing RCG, there is an equivalent non-combinatorial

non-erasing RCG.

In other words, the possibilities of combinatorial clauses and

erasing clauses do not increase the generative capacity of the

grammar. The crucial property for RCG’s being more powerful

than simple RCG is the possible non-linearity of the clauses.

Grammar Formalisms 24 LMG and RCG

Kallmeyer Sommersemester 2011

Range Concatenation Grammars (7)

Proposition 6 The set of string languages generated by RCGs is

exactly the class PTIME of all polynomial languages

([Bertsch and Nederhof, 2001]).

• The fact that every language generated by an RCG is

polynomial is confirmed by the existence of polynomial parsing

algorithms [Kallmeyer et al., 2009].

• The inclusion of all polynomial languages in the set of RCG

string languages is shown in Appendix A of

[Bertsch and Nederhof, 2001] by constructing an equivalent

RCG for a given two-way alternating finite automaton with k

heads. It is known that two-way alternating finite automata

recognize exactly the class PTIME.

Grammar Formalisms 25 LMG and RCG

Kallmeyer Sommersemester 2011

References

[Bertsch and Nederhof, 2001] Bertsch, E. and Nederhof, M.-J.

(2001). On the complexity of some extensions of RCG parsing.

In Proceedings of the Seventh International Workshop on Parsing

Technologies, pages 66–77, Beijing, China.

[Boullier, 1998a] Boullier, P. (1998a). A generalization of mildly

context-sensitive formalisms. In Proceedings of the Fourth

International Workshop on Tree Adjoining Grammars and

Related Formalisms (TAG+4), pages 17–20, University of

Pennsylvania, Philadelphia.

[Boullier, 1998b] Boullier, P. (1998b). A Proposal for a Natural

Language Processing Syntactic Backbone. Technical Report

3342, INRIA.

[Boullier, 1999] Boullier, P. (1999). Chinese numbers, mix,

Grammar Formalisms 26 LMG and RCG

Kallmeyer Sommersemester 2011

scrambling, and range concatenation grammars. In Proceedings

of the 9th Conference of the European Chapter of the Association

for Computational Linguistics (EACL’99), pages 53–60, Bergen,

Norway.

[Boullier, 2000] Boullier, P. (2000). Range Concatenation

Grammars. In Proceedings of the Sixth International Workshop

on Parsing Technologies (IWPT2000), pages 53–64, Trento, Italy.

[Groenink, 1995] Groenink, A. V. (1995). Literal movement

grammars. In Proceedings of the 7th EACL Conference.

[Groenink, 1996] Groenink, A. V. (1996). Mild context-sensitivity

and tuple-based generalizations of context-free grammar. Report

CS-R9634, Centrum voor Wiskunde en Informatica, Amsterdam.

[Groenink, 1997] Groenink, A. V. (1997). Surface Without

Structure. Word Order and Tractability in Natural Language

Analysis. PhD thesis, Utrecht University.

Grammar Formalisms 27 LMG and RCG

Kallmeyer Sommersemester 2011

[Kallmeyer et al., 2009] Kallmeyer, L., Maier, W., and Parmentier,

Y. (2009). An Earley Parsing Algorithm for Range

Concatenation Grammars. In Proceedings of ACL 2009,

Singapore.

[Kracht, 2003] Kracht, M. (2003). The Mathematics of Language.

Number 63 in Studies in Generative Grammar. Mouton de

Gruyter, Berlin.

[Ljunglöf, 2005] Ljunglöf, P. (2005). A polynomial time extension

of parallel Multiple Context-Free Grammar. In Logical Aspects

of Computational Linguistics, volume 3492 of Lecture Notes in

Computer Science, pages 177–188. Springer, Berlin/Heidelberg.

Grammar Formalisms 28 LMG and RCG

