Mildly Context-Sensitive Grammar Formalisms:

 LCFRS Parsing

 LCFRS Parsing}

Laura Kallmeyer

Sommersemester 2011

Grammar Formalisms

1

Overview

1. Ranges
2. CYK Parsing
3. Incremental Earley Parsing
(a) Deduction Rules
(b) Filters

Ranges (1)

- During parsing we have to link the terminals and variables in our LCFRS rules to portions of the input string.
- These can be characterized by their start and end positions.
- A range is an pair of indices that characterizes the span of a component within the input and a range vector characterizes a tuple in the yield of a non-terminal.
- The range instantiation of a rule specifies the computation of an element from the lefthand side yield from elements of in the yields of the right-hand side non-terminals based on the corresponding range vectors.

Ranges (2)

Example: Rule $A(a X a, b Y b) \rightarrow B(X) C(Y)$ and input string abababcb.
We assume without loss of generality that our LCFRSs are monotone and ε-free. Furthermore, because of the linearity, the components of a tuple in the yield of an LCFRS non-terminal are necessarily non-overlapping. Then, given this input, we have the following possible instantiations for this rule:

$$
\begin{array}{ll}
A\left({ }_{0} a b a_{3},{ }_{3} b a b_{6}\right) \rightarrow B\left({ }_{1} b_{2},{ }_{4} a_{5}\right) & A\left({ }_{0} a b a_{3},{ }_{3} b a b c b_{8}\right) \rightarrow B\left({ }_{1} b_{2},{ }_{4} a b c_{7}\right) \\
A\left({ }_{0} a b a_{3},{ }_{5} b c b_{8}\right) \rightarrow B\left({ }_{1} b_{2},{ }_{6} c_{7}\right) & A\left({ }_{0} a b a b a_{5}, 5 b c b_{8}\right) \rightarrow B\left({ }_{1} b a b_{4},{ }_{6} c_{7}\right) \\
A\left({ }_{2} a b a_{5},{ }_{5} b c b_{8}\right) \rightarrow B\left({ }_{3} b_{4},{ }_{6} c_{7}\right)
\end{array}
$$

Ranges (3)
Definition 1 (Range) Let $w \in T^{*}$ be a word with $w=w_{1} \ldots w_{n}$ where $w_{i} \in T$ for $1 \leq i \leq n$.

1. $\operatorname{Pos}(w):=\{0, \ldots, n\}$.
2. We call a pair $\langle l, r\rangle \in \operatorname{Pos}(w) \times \operatorname{Pos}(w)$ with $l \leq r$ a range in w. Its yield $\langle l, r\rangle(w)$ is the substring $w_{l+1} \ldots w_{r}$.
3. For two ranges $\rho_{1}=\left\langle l_{1}, r_{1}\right\rangle, \rho_{2}=\left\langle l_{2}, r_{2}\right\rangle$, if $r_{1}=l_{2}$, then the concatenation of ρ_{1} and ρ_{2} is $\rho_{1} \cdot \rho_{2}=\left\langle l_{1}, r_{2}\right\rangle$; otherwise $\rho_{1} \cdot \rho_{2}$ is undefined.
4. Two ranges $\left\langle l_{1}, r_{1}\right\rangle,\left\langle l_{2}, r_{2}\right\rangle$ are overlapping if
(a) either $l_{1} \leq l_{2}<r_{1}$ and $l_{1}<r_{2}$
(b) or $l_{1}<r_{2} \leq r_{1}$ and $l_{2}<r_{1}$.

5

Ranges (3)

Definition 2 (Range vector)

Let $w \in T^{*}$.

1. $A \vec{\rho} \in(\operatorname{Pos}(w) \times \operatorname{Pos}(w))^{k}$ is a k-dimensional range vector for w iff $\vec{\rho}=\left\langle\left\langle l_{1}, r_{1}\right\rangle, \ldots,\left\langle l_{k}, r_{k}\right\rangle\right\rangle$ where $\left\langle l_{i}, r_{i}\right\rangle$ is a range in w for $1 \leq i \leq k$.
2. For a k-dimensional range vector $\vec{\rho}$ for w we define the denotation of $\vec{\rho}$ as $\vec{\rho}(w):=\left\langle\left\langle l_{1}, r_{1}\right\rangle(w), \ldots,\left\langle l_{k}, r_{k}\right\rangle(w)\right\rangle$.
A range vector $\vec{\rho}$ is called simple iff its elements are pairwise non-overlapping.

Ranges (3)

Definition 3 (Range instantiation, [Boullier, 2000]) Let
$G=(N, T, V, P, S)$ be a LCFRS. For a given rule
$\gamma=A(\vec{\alpha}) \rightarrow A_{1}\left(\overrightarrow{\alpha_{1}}\right) \cdots A_{m}\left(\overrightarrow{\alpha_{m}}\right) \in P(0 \leq m)$,

1. a range instantiation with respect to a string $w=t_{1} \ldots t_{n}$ is a function $f:\left\{t^{\prime} \mid t^{\prime}\right.$ is an occurrence of some $t \in T$ in the clause $\} \cup V \cup\left\{E p s_{i} \mid 1 \leq i \leq \operatorname{dim}(A), \vec{\alpha}(i)=\varepsilon\right\} \rightarrow\{\langle i, j\rangle \mid i \leq$ $j, i, j \in \mathbb{N}\}$ such that
a) for all occurrences t^{\prime} of a $t \in T$ in $\vec{\alpha}, f\left(t^{\prime}\right)(w)=t$,
b) for all $X \in V, f(X)=\langle j, k\rangle$ for some $0 \leq j \leq k \leq n$,
c) for all x, y adjacent in one of the elements of $\vec{\alpha}$ there are i, j, k with $f(x)=\langle i, j\rangle, f(y)=\langle j, k\rangle$; we define then $f(x y)=\langle i, k\rangle$,
d) for all $E p s \in\left\{E p s_{i} \mid 1 \leq i \leq \operatorname{dim}(A), \vec{\alpha}(i)=\varepsilon\right\}$, there is a j, $0 \leq j \leq n$ with $f(E p s)=\langle j, j\rangle$; we define then for every ε-argument $\vec{\alpha}(i)$ that $f(\vec{\alpha}(i))=f\left(E p s_{i}\right) ;$
2. if f is an instantiation of a γ, then
$A(f(\vec{\alpha})) \rightarrow A_{1}\left(f\left(\overrightarrow{\alpha_{1}}\right)\right) \cdots A_{m}\left(f\left(\overrightarrow{\alpha_{m}}\right)\right)$ is an instantiated rule where $f\left(\left\langle x_{1}, \ldots, x_{k}\right\rangle\right)=\left\langle f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\rangle$.

CYK Parsing (1)

First introduced in [Seki et al., 1991]; deduction-based definition in, e.g., [Kallmeyer and Maier, 2010].

Idea: Once all predicates in the RHS of a rules have been found, complete LHS, more precisely:

- We start with the terminal symbols: whenever we can find a range instantiation of a rule with rhs ε, we conclude that this rule can be applied (scan operation),
- We traverse the derivation tree bottom-up: whenever, for a range instantiation of a rule, all pairs of non-terminal symbol and range vector in the rhs have been found, we conclude that this rule can be applied and the lhs of the instantiated rule is deduced (complete operation).
- Our input w is in the language iff S with range vector $\langle\langle 0, n\rangle\rangle$ is in the final set of results that we have deduced.
Grammar Formalisms $\quad 9 \quad$ LCFRS Parsing

CYK Parsing (2

Deduction rules:
Items $[A, \vec{\rho}]$ with $A \in N, \vec{\rho}$ is a $\operatorname{dim}(A)$-dimensional range vector in w.

$$
\begin{aligned}
& \text { Axioms: } \frac{}{[A, \vec{\rho}]} A(\vec{\rho}) \rightarrow \varepsilon \text { a range instantiated rule } \\
& \text { Complete: } \frac{\left[A_{1}, \overrightarrow{\rho_{1}}\right], \ldots,\left[A_{m}, \overrightarrow{\rho_{m}}\right]}{[A, \vec{\rho}]}
\end{aligned} \begin{aligned}
& A(\vec{\rho}) \rightarrow A_{1}\left(\overrightarrow{\rho_{1}}\right), \ldots, A_{m}\left(\overrightarrow{\rho_{m}}\right) \\
& \text { a range instantiated rule }
\end{aligned}
$$

Goal item: $[S,\langle\langle 0, n\rangle\rangle]$

CYK Parsing (3)

Deduction rules for binarized ε-free grammars where, without loss of generality, either the lhs contains a single terminal and the rhs is ε or the rule contains only variables:
Items and goal as before.

Scan: $\overline{[A,\langle\langle i, i+1\rangle\rangle]} A\left(w_{i+1}\right) \rightarrow \varepsilon \in P$

Unary: $\frac{[B, \vec{\rho}]}{[A, \vec{\rho}]} A(\vec{\alpha}) \rightarrow B(\vec{\alpha}) \in P$
Binary: $\frac{\left[B, \overrightarrow{\rho_{B}}\right],\left[C, \overrightarrow{\rho_{C}}\right]}{\left[A, \overrightarrow{\rho_{A}}\right]} \quad \begin{aligned} & A\left(\overrightarrow{\rho_{A}}\right) \rightarrow B\left(\overrightarrow{\rho_{B}}\right) C\left(\overrightarrow{\rho_{C}}\right) \\ & \text { is a range instantiated rule }\end{aligned}$

Grammar Formalisms
11
LCFRS Parsing

CYK Parsing (4)

Complexity of CYK parsing with binarized LCFRSs:
We have to consider the maximal number of possible applications of the complete rule.
Binary: $\frac{\left[B, \overrightarrow{\rho_{B}}\right],\left[C, \overrightarrow{\rho_{C}}\right]}{\left[A, \overrightarrow{\rho_{A}}\right]}$
$A\left(\overrightarrow{\rho_{A}}\right) \rightarrow B\left(\overrightarrow{\rho_{B}}\right) C\left(\overrightarrow{\rho_{C}}\right)$
is a range instantiated rule

If k is the maximal fan-out in the LCFRS, we have maximal $2 k$ range boundaries in each of the antecedent items of this rule. For variables X_{1}, X_{2} being in the same lhs side argument of the rule, X_{1} left of X_{2} and no other variables in between, the right boundary of X_{1} is the left boundary of X_{2}. In the worst case, A, B, C all have fan-out k and each lhs argument contains two variables. This gives $3 k$ independent range boundaries and consequently a time complexity of $\mathcal{O}\left(n^{3 k}\right)$ for the entire algorithm.

Incremental Earley Parsing

Strategy:

- Process LHS arguments incrementally, starting from an S-rule
- Whenever we reach a variable, move into rule of correponding rhs non-terminal (predict or resume).
- Whenever we reach the end of an argument, suspend the rule and move into calling parent rule.
- Whenever we reach the end of the last argument convert item into a passive one and complete parent item.
This parser is described in [Kallmeyer and Maier, 2009] and inspired by the Thread Automata in
[Villemonte de La Clergerie, 2002]

Grammar Formalism

13

Incremental Earley Parsing: Items

- Passive items: $[A, \vec{\rho}]$ where A is a non-terminal of fan-out k and $\vec{\rho}$ is a range vector of fan-out k
- Active items:

$$
\left[A(\vec{\phi}) \rightarrow A_{1}\left(\overrightarrow{\phi_{1}}\right) \ldots A_{m}\left(\overrightarrow{\phi_{m}}\right), \operatorname{pos},\langle i, j\rangle, \vec{\rho}\right]
$$

where

- $A(\vec{\phi}) \rightarrow A_{1}\left(\overrightarrow{\phi_{1}}\right) \ldots A_{m}\left(\overrightarrow{\phi_{m}}\right) \in P ;$
- pos $\in\{0, \ldots, n\}$: We have reached input position pos;
- $\langle i, j\rangle \in \mathbb{N}^{2}$: We have reached the j th element of i th argument (dot position);
- $\vec{\rho}$ is a range vector containing variable and terminal bindings. All elements are initialized to "?", an initialized vector is called $\vec{\rho}_{\text {init }}$.

Incremental Earley Parsing: Example (1)

$S\left(X_{1} X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right) \quad A\left(a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right) \quad A(a, b) \longrightarrow \varepsilon$
Parsing trace for input $w=a a b b$:

	pos	item	$\vec{\rho}$	
1	0	$S\left(\bullet X_{1} X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(?, ?)$	axiom
2	0	$A\left(\bullet a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(?, ?, ?, ?)$	predict, 1
3	0	$A(\bullet a, b) \longrightarrow \varepsilon$	$(?, ?)$	predict, 1
4	1	$A\left(a \bullet X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,1\rangle, ?, ?, ?)$	scan, 2
5	1	$A(a \bullet, b) \longrightarrow \varepsilon$	$(\langle 0,1\rangle, ?)$	scan, 3
6	1	$A\left(\bullet a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(?, ?, ?, ?)$	predict, 4
7	1	$A(\bullet a, b) \longrightarrow \varepsilon$	$(?, ?)$	predict 4
8	1	$S\left(X_{1} \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,1\rangle, ?)$	susp. 5, 1
9	1	$A(a, \bullet b) \longrightarrow \varepsilon$	$(\langle 0,1\rangle, ?)$	resume 5, 8

Incremental Earley Parsing: Example (2)

10	2	$A\left(a \bullet X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 1,2\rangle, ?, ?, ?)$	scan 6
11	2	$A(a \bullet, b) \longrightarrow \varepsilon$	$(\langle 1,2\rangle, ?)$	scan 7
12	2	$A\left(\bullet a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(?, ?, ?, ?)$	predict 10
13	2	$A(\bullet a, b) \longrightarrow \varepsilon$	$(?, ?)$	predict 10
14	2	$A\left(a X_{1} \bullet b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,1\rangle,\langle 1,2\rangle, ?, ?)$	susp. 11, 4
15	2	$S\left(X_{1} \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,2\rangle, ?)$	susp. 14, 1
16	2	$A\left(a X_{1}, \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,1\rangle,\langle 1,2\rangle, ?, ?)$	resume 14, 15
17	3	$A\left(a X_{1}, b \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle, ?)$	scan 16
18	3	$A(a, \bullet b) \longrightarrow \varepsilon$	$(\langle 1,2\rangle, ?)$	resume 11, 17

Incremental Earley Parsing: Example (3)

19	4	$A(a, b \bullet) \longrightarrow \varepsilon$	$(\langle 1,2\rangle,\langle 3,4\rangle)$	scan 18
20	4	$A(\langle 1,2\rangle,\langle 3,4\rangle)$		convert 19
21	4	$A\left(a X_{1}, b X_{2} \bullet\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,4\rangle)$	compl. 17, 20
22	4	$A(\langle 0,2\rangle,\langle 2,4\rangle)$		convert 21
23	4	$S\left(X_{1} X_{2} \bullet\right) \longrightarrow A\left(X_{1}, X_{2}\right)$	$(\langle 0,2\rangle,\langle 2,4\rangle)$	compl. 15, 22
24	4	$S(\langle 0,4\rangle)$		convert 23

Incremental Earley Parsing: Initialize, Goal item

Goal Item: $[S(\vec{\phi}) \rightarrow \vec{\Phi}, n,\langle 1, j\rangle, \psi]$ with $|\vec{\phi}(1)|=j$ (i.e., dot at the end of lhs argument).

Incremental Earley Parsing: Deduction Rules

- Notation:
$-\vec{\rho}(X)$: range bound to variable X.
$-\vec{\rho}(\langle i, j\rangle)$: range bound to j th element of i th argument on LHS.
- Applying a range vector $\vec{\rho}$ containing variable bindings for given rule c to the argument vector of the lefthand side of c means mapping the i th element in the arguments to $\vec{\rho}(i)$ and concatenating adjacent ranges. The result is defined iff every argument is thereby mapped to a range.

Incremental Earley Parsing: Predict

Whenever our dot is left of a variable that is the first argument of some rhs non-terminal B, we predict new B-rules:

Predict: $\frac{\left[A(\vec{\phi}) \rightarrow \ldots B(X, \ldots) \ldots, \operatorname{pos},\langle i, j\rangle, \vec{\rho}_{A}\right]}{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \operatorname{pos},\langle 1,0\rangle, \vec{\rho}_{\text {init }}\right]}$
where $\vec{\phi}(i, j+1)=X, B(\vec{\psi}) \rightarrow \vec{\Psi} \in P$

Incremental Earley Parsing: Suspend

Suspend:

$\frac{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \operatorname{pos}^{\prime},\langle i, j\rangle, \vec{\rho}_{B}\right],\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \operatorname{pos},\langle k, l\rangle, \vec{\rho}_{A}\right]}{\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \text { pos }^{\prime},\langle k, l+1\rangle, \vec{\rho}\right]}$
where

- the dot in the antecedent A-item precedes the variable $\vec{\xi}(i)$,
- $|\vec{\psi}(i)|=j$ (i th argument has length j, i.e., is completely processed),
- $|\vec{\psi}|<i$ (ith argument is not the last argument of B),
- $\vec{\rho}_{B}(\vec{\psi}(i))=\left\langle p o s, p o s^{\prime}\right\rangle$
- and for all $1 \leq m<i: \vec{\rho}_{B}(\vec{\psi}(m))=\vec{\rho}_{A}(\vec{\xi}(m))$.
$\vec{\rho}$ is $\vec{\rho}_{A}$ updated with $\vec{\rho}_{A}(\vec{\xi}(i))=\left\langle\right.$ pos, pos $\left.{ }^{\prime}\right\rangle$.

Incremental Earley Parsing: Convert

Whenever we arrive at the end of the last argument, we convert the item into a passive one:

Convert:
$\frac{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \text { pos },\langle i, j\rangle, \vec{\rho}_{B}\right]}{[B, \rho]}|\vec{\psi}(i)|=j,|\vec{\psi}|=i, \vec{\rho}_{B}(\vec{\psi})=\rho$

Incremental Earley Parsing: Complete

Whenever we have a passive B item we can use it to move the dot over the variable of the last argument of B in a parent A-rule:
Complete: $\frac{\left[B, \vec{\rho}_{B}\right],\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \operatorname{pos},\langle k, l\rangle, \vec{\rho}_{A}\right]}{\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \operatorname{pos}^{\prime},\langle k, l+1\rangle, \vec{\rho}\right]} \quad$ where

- the dot in the antecedent A-item precedes the variable $\vec{\xi}\left(\left|\vec{\rho}_{B}\right|\right)$,
- the last range in $\vec{\rho}_{B}$ is $\left\langle p o s, p o s^{\prime}\right\rangle$,
- and for all $1 \leq m<\left|\vec{\rho}_{B}\right|: \vec{\rho}_{B}(m)=\vec{\rho}_{A}(\vec{\xi}(m))$.
$\vec{\rho}$ is $\vec{\rho}_{A}$ updated with $\vec{\rho}_{A}\left(\vec{\xi}\left(\left|\vec{\rho}_{B}\right|\right)\right)=\left\langle\right.$ pos, pos $\left.{ }^{\prime}\right\rangle$.

Incremental Earley Parsing: Resume

Whenever we are left of a variable that is not the first argument of one of the rhs non-terminals, we resume the rule of the rhs non-terminal.

$$
\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \operatorname{pos},\langle i, j\rangle, \vec{\rho}_{A}\right]
$$

Resume:

$$
\frac{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \operatorname{pos}^{\prime},\langle k-1, l\rangle, \vec{\rho}_{B}\right]}{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \operatorname{pos},\langle k, 0\rangle, \vec{\rho}_{B}\right]}
$$

where

- $\vec{\phi}(i, j+1)=\vec{\xi}(k), k>1$ (the next element is a variable that is the k th element in $\vec{\xi}$, i.e., the k th argument of B),
- $|\vec{\psi}(k-1)|=l$, and
- $\vec{\rho}_{A}(\vec{\xi}(m))=\vec{\rho}_{B}(\vec{\psi}(m))$ for all $1 \leq m \leq k-1$.

Incremental Earley Parsing: Filters

- Filters can be applied to decrease the number of items in the chart
- A filter is an additional condition on the form of items
- E.g., in a ε-free grammar, the number of variables in the part of the lefthand side arguments of a rule that has not been processed yet must be lower or equal to the length of the remaining input.

Incremental Earley Parsing: Remaining Input Length

Filter

- In ε-free grammars each variable must cover at least one input symbol.
- i input symbols left implies no prediction of a clause with more than i variables or terminals on LHS since no instantiation is possible
- Condition on active items, can be applied with predict, resume, suspend and complete
An item $\left[A(\vec{\phi}) \rightarrow A_{1}\left(\overrightarrow{\phi_{1}}\right) \ldots A_{m}\left(\overrightarrow{\phi_{m}}\right), \operatorname{pos},\langle i, j\rangle, \vec{\rho}\right]$ satisfies the length filter iff

$$
(n-p o s) \geq(|\vec{\phi}(i)|-j)+\Sigma_{k=i+1}^{\operatorname{dim}(A)}|\vec{\phi}(k)|
$$

Incremental Earley Parsing: Preterminal Filter (1)

- Check for the presence of (pre)terminals in the predicted part of a clause in the remaining input, and
- check that terminals appear in the predicted order and that distance between two of them is at least the number of variables/terminals in between.
continued...

Incremental Earley Parsing: Preterminal Filter (2)

In other words, an active item
$\left[A(\vec{\phi}) \rightarrow A_{1}\left(\overrightarrow{\phi_{1}}\right) \ldots A_{m}\left(\overrightarrow{\phi_{m}}\right), \operatorname{pos},\langle i, j\rangle, \vec{\rho}\right]$ satisfies the preterminal
filter iff we can find an injective mapping
$f_{T}:$ Term $=\{\langle k, l\rangle \mid \vec{\phi}(k, l) \in T$ and either $k>i$ or $(k=i$ and
$l>j)\} \rightarrow\{\operatorname{pos}+1, \ldots, n\}$ such that

1. $w_{f_{T}(\langle k, l\rangle)}=\vec{\phi}(k, l)$ for all $\langle k, l\rangle \in$ Term;
2. for all $\left\langle k_{1}, l_{1}\right\rangle,\left\langle k_{2}, l_{2}\right\rangle \in T e r m$ with $k_{1}=k_{2}$ and $l_{1}<l_{2}$: $f_{T}\left(\left\langle k_{2}, l_{2}\right\rangle\right) \geq f_{T}\left(\left\langle k_{1}, l_{1}\right\rangle\right)+\left(l_{2}-l_{1}\right) ;$
3. for all $\left\langle k_{1}, l_{1}\right\rangle,\left\langle k_{2}, l_{2}\right\rangle \in T e r m$ with $k_{1}<k_{2}$: $f_{T}\left(\left\langle k_{2}, l_{2}\right\rangle\right) \geq f_{T}\left(\left\langle k_{1}, l_{1}\right\rangle\right)+\left(\left|\vec{\phi}\left(k_{1}\right)\right|-l_{1}\right)+\sum_{k=k_{1}+1}^{k_{2}-1}|\vec{\phi}(k)|+l_{2}$.

References

[Boullier, 2000] Boullier, P. (2000). Range Concatenation Grammars. In Proceedings of the Sixth International Workshop on Parsing Technologies (IWPT2000), pages 53-64, Trento, Italy.
[Kallmeyer and Maier, 2009] Kallmeyer, L. and Maier, W. (2009). An incremental Earley parser for simple Range Concatenation Grammar. In Proceedings of IWPT 2009.
[Kallmeyer and Maier, 2010] Kallmeyer, L. and Maier, W. (2010). Data-driven parsing with probabilistic Linear Context-Free Rewriting Systems. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing, China.
[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theoretical

Computer Science, 88(2):191-229.

[Villemonte de La Clergerie, 2002] Villemonte de La Clergerie, E. (2002). Parsing mildly context-sensitive languages with thread automata. In Proc. of COLING'02.

