Sommersemester 2011

Mildly Context-Sensitive Grammar

Formalisms:

LCFRS Normal Forms

Laura Kallmever

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

1

 $\mathbf{2}$

Introduction (1)

- A *normal form* for a grammar formalism puts additional constraints on the form of the grammar while keeping the generative capacity.
- In other words, for every grammar G of a certain formalism, one can construct a weakly equivalent grammar G' of the same formalism that satisfies additional normal form constraints.
- Example: For CFGs we know that we can construct equivalent ε -free CFGs, equivalent CFGs in Chomsky Normal Form and equivalent CFGs in Greibach Normal Form.

3

• Normal Forms are useful since they facilitate proofs of properties of the grammar formalism.

Grammar Formalisms

LCFRS Normal Forms

Sommersemester 2011

Kallmeyer

Eliminating useless rules (1)

[Boullier, 1998] shows a range of useful properties of simple RCG that can help to make formal proofs and parsing easier.

Boullier defines clauses that cannot be used in derivations $S(\langle 0, n \rangle) \stackrel{*}{\Rightarrow} \varepsilon$ for any $w \in T^*$ as useless.

Proposition 1 For each simple k-RCG G, there exists an equivalent simple k'-RCG G' with $k' \leq k$ that does not contain useless rules.

4

Grammar Formalisms

LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Overview

- 1. Introduction
- 2. Eliminating useless rules
- 3. Eliminating ε -Rules
- 4. Ordered Simple RCG
- 5. Binarization

The removal of the useless rules can be done in the same way as in the CFG case [Hopcroft and Ullman, 1979]:

1. All rules need to be eliminated that cannot lead to a terminal sequence.

This can be done recursively: Starting from the terminating rules and following the rules from right to left, the set of all non-terminals leading to terminals can be computed recursively.

Grammar Formalisms	5	LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Eliminating useless rules (3)

1. (continued)

We can characterize this set N_T with the following deduction rules:

$$\begin{array}{c} \hline & [A] \\ \hline & [A] \\ \hline & [A_1], \dots, [A_m] \\ \hline & [A] \\ \end{array} \quad A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \dots A_m(\vec{\alpha_m}) \in P \end{array}$$

All rules that contain non-terminals in their right-hand side that are not in this set are eliminated.

6

Eliminating useless rules (4)

2. Then the unreachable rules need to be eliminated.

This is done starting from all S-rules and moving from left-hand sides to right-hand sides. If the right-hand side contains a predicate A, then all A-rules are reachable and so on. Each time, the rules for the predicates in a right-hand side are added.

We can characterize the set N_S of non-terminals reachable from S with the following deduction rules:

$$[S] \qquad \qquad [A] \\ \hline [A_1], \dots, [A_m] \quad A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \dots A_m(\vec{\alpha_m}) \in P$$

Rules whose left-hand side predicate is not in this set are eliminated.

7

Grammar Formalisms

LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Eliminating ε -rules (1)

[Boullier, 1998, Seki et al., 1991] show that the elimination of ε -rules is possible in a way similar to CFG. We define that a rule is an ε -rule if one of the arguments of the left-hand side is the empty string ε .

Definition 1 A simple RCG is ε -free if it either contains no ε -rules or there is exactly one rule $S(\varepsilon) \to \varepsilon$ and S does not appear in any of the right-hand sides of the rules in the grammar.

8

Proposition 2 For every simple k-RCG G there exists an equivalent ε -free simple k'-RCG G' with $k' \leq k$.

Eliminating ε -rules (4)

Now that we have the set N_{ε} we can obtain reduced rules from the ones in the grammar where ε -arguments are left out.

Example:

$$\begin{split} S(XY) &\to A(X,Y), \, A(a,\varepsilon) \to \varepsilon, \, A(\varepsilon,a) \to \varepsilon, \, A(a,b) \to \varepsilon \\ N_{\varepsilon} &= \{(S,1), (A,10), (A,01), (A,11)\} \end{split}$$

Rules after ε -elimination $((A, \vec{\iota})$ is written $A^{\vec{\iota}})$: $S'(X) \to S^1(X),$ $(S' \text{ takes care of the case of } \varepsilon \in L(G))$ $S^1(X) \to A^{10}(X), A^{10}(a) \to \varepsilon,$ $S^1(X) \to A^{01}(X), A^{01}(b) \to \varepsilon,$ $S^1(XY) \to A^{11}(X, Y), A^{11}(a, b) \to \varepsilon$

11

Grammar Formalisms

LCFRS Normal Forms

Sommersemester 2011

Kallmeyer

Eliminating ε -rules (5)

To obtain the new rules P_{ε} , we proceed as follows:

- 1. $P_{\varepsilon} = \emptyset$
- 2. We pick a new start symbol $S' \notin N_{\varepsilon}$. If $\varepsilon \in L(G)$, we add $S'(\varepsilon) \to \varepsilon$ to P_{ε} . If $S^1 \in N_{\varepsilon}$, we add $S'(X) \to S^1(X)$ to P_{ε} .
- 3. For every rule $A(\alpha) \to A_1(\vec{x}_1) \dots A_k(\vec{x}_k) \in P$: add all ε -reductions of this rule to P_{ε} .

12

$\tau(i) \neq \varepsilon$ if $\vec{\iota}(i) \neq 0$.

Eliminating ε -rules (2)

Example:

$$S(XY) \to A(X,Y), \ A(a,\varepsilon) \to \varepsilon, \ A(\varepsilon,a) \to \varepsilon, \ A(a,b) \to \varepsilon$$

• First, we have to compute for all predicates A, all possibilities

a set N_{ε} of pairs $(A, \vec{\iota})$ where $\vec{\iota}$ signifies that it is possible for A

to have empty ranges among the components of the yields.
For this, we introduce vectors *i* ∈ {0, 1}^{dim(A)} and we generate

to have a tuple τ in its yield with $\tau(i) = \varepsilon$ if $\vec{\iota}(i) = 0$ and

Set of pairs characterizing possibilities for ε -components:

 $N_{\varepsilon} = \{(S, 1), (A, 10), (A, 01), (A, 11)\}$

Grammar Formalisms

LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Eliminating ε -rules (3)

The set N_{ε} is constructed recursively:

1. $N_{\varepsilon} = \emptyset$.

2. For every rule $A(x_1, \ldots, x_{dim(A)}) \to \varepsilon$, add $(A, \vec{\iota})$ to N_{ε} with for all $1 \le i \le dim(A)$: $\vec{\iota}(i) = 0$ if $x_i = \varepsilon$, else $\vec{\iota}(i) = 1$.

9

3. Repeat until N_{ε} does not change any more:

For every rule $A(x_1, \ldots, x_{dim(A)}) \to A_1(\alpha_1) \ldots A_k(\alpha_k)$ and all $(A_1, \vec{\iota}_1), \ldots, (A_k, \vec{\iota}_k) \in N_{\varepsilon}$: Calculate a vector $(x'_1, \ldots, x'_{dim(A)})$ from $(x_1, \ldots, x_{dim(A)})$ by replacing every variable that is the *j*th variable of A_m in the right-hand side such that $\vec{\iota}_m(j) = 0$ with ε . Then add $(A, \vec{\iota})$ to N_{ε} with for all $1 \le i \le dim(A)$: $\vec{\iota}(i) = 0$ if

10

 $x'_i = \varepsilon$, else $\vec{\iota}(i) = 1$.

Grai

Kallmever

Sommersemester 2011

Sommersemester 2011

Eliminating ε -rules (6)

The ε -reductions of $A(\alpha) \to A_1(\vec{x}_1) \dots A_k(\vec{x}_k)$ are obtained as follows:

For all combinations of $\vec{\iota}_1, \ldots, \vec{\iota}_k$ such that $A_i^{\vec{\iota}_i} \in N_{\varepsilon}$ for $1 \leq i \leq k$:

- (i) For all i, 1 ≤ i ≤ k: replace A_i in the rhs with A_iⁱ and for all j, 1 ≤ j ≤ dim(A_i): if i_i(j) = 0, then remove the jth component of A_iⁱ from the rhs and delete the variable x_i(j) in the lhs.
- (ii) Let $\vec{\iota} \in \{0, 1\}^{dim(A)}$ be the vector with $\vec{\iota}(i) = 0$ iff the *i*th component of A is empty in the rule obtained from (i). Remove all ε -components in the lhs and replace A with $A^{\vec{\iota}}$.

ammar Formalisms	13	LCFRS Normal Forms

Ordered Simple RCG (1)

In general, in MCFG/LCFRS/simple RCG, when using a rule in a derivation, the order of the components of its lhs in the input is not necessarily the order of the components in the rule.

14

Example:

 $S(XY) \to A(X,Y), A(aXb, cYd) \to A(Y,X), A(e,f) \to \varepsilon.$

String language:

 $\begin{aligned} &\{(ac)^n e(db)^n (ca)^n f(bd)^n \mid n \ge 0\} \\ &\cup \{(ac)^n a f b(db)^n (ca)^n ced(bd)^n \mid n \ge 0\} \end{aligned}$

Ordered Simple RCG (2)

Definition 2 (Ordered simple RCG) A simple RCG is ordered if for every rule $A(\vec{\alpha}) \rightarrow A_1(\vec{\alpha_1}) \dots A_k(\vec{\alpha_k})$ and every $A_i(\vec{\alpha_i}) = A_i(Y_1, \dots, Y_{dim(A_i)})$ $(1 \le i \le k)$, the order of the components of $\vec{\alpha_i}$ in $\vec{\alpha}$ is $Y_1, \dots, Y_{dim(A_i)}$.

Proposition 3 For every simple k-RCG G there exists an equivalent ordered simple k-RCG G'.

[Michaelis, 2001, Kracht, 2003, Kallmeyer, 2010]

In LCFRS terminology, this property is called *monotone* while in MCFG terminology, it is called *non-permuting*.

15

Grammar Formalisms

LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Ordered Simple RCG (3)

Idea of the transformation:

- We check for every rule whether the component order in one of the right-hand side predicates A does not correspond to the one in the left-hand side.
- If so, we add a new predicate that differs from A only with respect to the order of the components. We replace A in the rule with the new predicate with reordered components.
- Furthermore, we add a copy of every A-rule with A replaced in the left-hand side by the new predicate and reordering of the components.

We notate the permutations of components as vectors where the *i*th element is the image of *i*. For a predicate *A*, *id* is the vector $\langle 1, 2, \ldots, \dim(A) \rangle$.

16

Sommersemester 2011

Ordered Simple RCG (4)
Transformation into an ordered simple RCG:
$P^\prime := P$ with all predicates A replaced with A^{id} ;
$N':=\{A^{id} A\in N\}$;
repeat until P^\prime does not change any more:
for all $r = A^p(\vec{lpha}) o A_1^{p_1}(\vec{lpha_1}) \dots A_k^{p_k}(\vec{lpha_k})$ in P' :
for all i , $1 \leq i \leq k$:
if $A_i^{p_i}(ec{lpha_i}) = A_i^{p_i}(Y_1,\ldots,Y_{dim(A_i)})$ and the order of the
$Y_1,\ldots,Y_{dim(A_i)}$ in $ec lpha$ is $p(Y_1,\ldots,Y_{dim(A_i)})$
where p is not the identity
then replace $A_i^{p_i}(ec{lpha_i})$ in r with $A_i^{p_i\circ p}(p(ec{lpha_i}))$
if $A_i^{p_i \circ p} \notin N'$ then add $A_i^{p_i \circ p}$ to N' and
for every $A_i^{p_i} \operatorname{-rule}\ A_i^{p_i}(ec{\gamma}) o \Gamma \in P'$:
add $A_i^{p_i \circ p}(p(ec{\gamma})) o \Gamma$ to P'

Grammar Formalisms	17	LCFRS Normal Forms
--------------------	----	--------------------

Kallmever

Sommersemester 2011

Kallmeyer

Ordered Simple RCG (6)	
Result:	
$S^{\langle 1\rangle}(XY) \to A^{\langle 1,2\rangle}(X,Y)$	$A^{\langle 1,2\rangle}(e,f)\to \varepsilon$
$A^{\langle 1,2\rangle}(aXb,cYd)\to A^{\langle 2,1\rangle}(X,Y)$	$A^{\langle 2,1\rangle}(f,e)\to \varepsilon$
$A^{\langle 2,1\rangle}(cYd,aXb)\to A^{\langle 1,2\rangle}(Y,X)$	

Note that in general, this transformation algorithm is exponential in the size of the original grammar.

19

Grammar Formalisms

LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Ordered Simple RCG (5)

Consider again our example

 $P' = \{S(XY) \to A(X,Y), A(aXb, cYd) \to A(Y,X), A(e,f) \to \varepsilon\}.$

- Problematic rule: $A^{\langle 1,2\rangle}(aXb,cYd) \to A^{\langle 1,2\rangle}(Y,X)$
- Introduce new non-terminal $A^{(2,1)}$ where (2,1) is the permutation that switches the two arguments. Replace $A^{\langle 1,2\rangle}(aXb,cYd) \to A^{\langle 1,2\rangle}(Y,X)$ with $A^{\langle 1,2\rangle}(aXb,cYd) \to A^{\langle 2,1\rangle}(X,Y).$
- Add $A^{\langle 2,1\rangle}(f,e) \to \varepsilon$ and $A^{\langle 2,1\rangle}(cYd,aXb) \to A^{\langle 2,1\rangle}(X,Y)$.
- Now, $A^{\langle 2,1\rangle}(cYd, aXb) \to A^{\langle 2,1\rangle}(X,Y)$ is problematic. $\langle 2,1\rangle \circ \langle 2,1\rangle = \langle 1,2\rangle$, therefore we replace this rule with $A^{\langle 2,1\rangle}(cYd, aXb) \to A^{\langle 1,2\rangle}(Y,X)$. $A^{\langle 1,2\rangle}$ is no new non-terminal, so no further rules are added.

18

Binarization (1)

In LCFRS terminology, the length of the right-hand side of a production is called its *rank*. The *rank* of an LCFRS is given by the maximal rank of its productions.

Proposition 4 For every simple RCG/LCFRS G there exists an equivalent simple RCG/LCFRS G' that is of rank 2.

Unfortunately, the fan-out of G' might be higher than the fan-out of G.

The transformation can be performed similarly to the CNF transformation for CFG [Hopcroft and Ullman, 1979, Grune and Jacobs, 2008].

Grammar Formalisms

Sommersemester 2011

Binarization (2)

Example:

$S(XYZUVW) \rightarrow A(X,U)B(Y,V)C(Z,W)$

$A(aX,aY) \to A(X,Y)$	$A(a,a) \to \varepsilon$
$B(bX,bY) \to B(X,Y)$	$B(b,b)\to \varepsilon$
$C(cX,cY) \to C(X,Y)$	$C(c,c)\to \varepsilon$

Equivalent binarized grammar:

$S(XPUQ) \to A(X,U)C_1(X,U)$	P,Q $C_1(YZ,VW) \to B(Y,V)C(Z,W)$
$A(aX,aY) \to A(X,Y)$	$A(a,a) \to \varepsilon$
$B(bX,bY) \to B(X,Y)$	$B(b,b) \to \varepsilon$
$C(cX,cY) \to C(X,Y)$	$C(c,c) \to \varepsilon$

Grammar Formalisms	21	LCFRS Normal

Kallmeyer

Sommersemester 2011

Forms

Binarization (3)

We define the reduction of a vector $\vec{\alpha_1} \in [(T \cup V)^*]^{k_1}$ by a vector $\vec{x} \in (V^*)^{k_2}$ where all variables in \vec{x} occur in $\vec{\alpha_1}$ as follows:

Take all variables from $\vec{\alpha_1}$ (in their order) that are not in \vec{x} while starting a new component in the resulting vector whenever an element is, in $\vec{\alpha_1}$, the first element of a component or preceded by a variable from \vec{x} or a terminal.

Examples:

- 1. $\langle aX_1, X_2, bX_3 \rangle$ reduced with $\langle X_2 \rangle$ yields $\langle X_1, X_3 \rangle$.
- 2. $\langle aX_1X_2bX_3 \rangle$ reduced with $\langle X_2 \rangle$ yields $\langle X_1, X_3 \rangle$ as well.

22

Kallmeyer

Binarization (4)		
Transformation into a sin	mple RCG of rank	2:
for all $r=A(ec{lpha}) ightarrow A_0(ec{lpha})$	$ec{lpha_0})\ldots A_m(ec{lpha_m})$ in P	with $m>1$:
remove $r \text{ from } P$ and	pick new non-term	inals C_1, \ldots, C_{m-1}
$R:= \emptyset$		
add the rule $A(\vec{\alpha}) \rightarrow$	$A_0(ec{lpha_0})C_1(ec{\gamma_1})$ to R	, where $ec{\gamma_1}$
is obtained by re	ducing $ec{lpha}$ with $ec{lpha_0}$	
for all $i\text{, }1\leq i\leq m$	-2:	
add the rule $C_i(ar\gamma$	$\vec{i}_i) \to A_i(\vec{\alpha_i})C_{i+1}(\vec{\gamma_{i+1}})$	$_{1})$ to R where $\gamma ec{i+1}$
is obtained by	reducing $ec{\gamma_i}$ with	$\vec{lpha_i}$
add the rule $C_{m-1}(\gamma$	$\vec{m-2}$) $\rightarrow A_{m-1}(\vec{\alpha_{m-1}})$	$)A_m(ec{lpha_m})$ to R
for every rule $r'\in P$	2	
replace rhs argum	lents of length $>$	l with new variables
(in both sides) and add the rest	ult to P
Grammar Formalisms	23	LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Binarization (5)

In our example, for the rule $S(XYZUVW) \rightarrow A(X,U)B(Y,V)C(Z,W)$, we obtain

$$\begin{split} R = \{ & S(XYZUVW) \rightarrow A(X,U)C_1(YZ,VW), \\ & C_1(YZ,VW) \rightarrow B(Y,V)C(Z,W) \end{cases} \} \end{split}$$

Collapsing sequences of adjacent variables in the rhs leads to the two rules

 $S(XPUQ) \rightarrow A(X,U)C_1(P,Q), C_1(YZ,VW) \rightarrow B(Y,V)C(Z,W)$

24

References

[Boullier, 1998] Boullier, P. (1998). A Proposal for a Natural Language Processing Syntactic Backbone. Technical Report 3342, INRIA.
[Grune and Jacobs, 2008] Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide. Monographs in Computer Science. Springer. Second Edition.
[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages and Computation. Addison Wesley.
[Kallmeyer, 2010] Kallmeyer, L. (2010). Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Heidelberg.
[Kracht, 2003] Kracht, M. (2003). The Mathematics of Language.

Grammar Formalisms	25	LCFRS Normal Forms

Kallmeyer

Sommersemester 2011

Number 63 in Studies in Generative Grammar. Mouton de Gruyter, Berlin.

[Michaelis, 2001] Michaelis, J. (2001). On Formal Properties of Minimalist Grammars. PhD thesis, Potsdam University.

[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. *Theoretical Computer Science*, 88(2):191–229.