Mildly Context-Sensitive Grammar

Formalisms:

LCFRS Normal Forms

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf
Sommersemester 2011
Grammar Formalisms $1 \quad$ LCFRS Normal Forms

Overview

1. Introduction
2. Eliminating useless rules
3. Eliminating ε-Rules
4. Ordered Simple RCG
5. Binarization

Introduction (1)

- A normal form for a grammar formalism puts additional constraints on the form of the grammar while keeping the generative capacity.
- In other words, for every grammar G of a certain formalism, one can construct a weakly equivalent grammar G^{\prime} of the same formalism that satisfies additional normal form constraints
- Example: For CFGs we know that we can construct equivalent ε-free CFGs, equivalent CFGs in Chomsky Normal Form and equivalent CFGs in Greibach Normal Form.
- Normal Forms are useful since they facilitate proofs of properties of the grammar formalism.

| Grammar Formalisms $\quad 3$ | LCFRS Normal Forms |
| :--- | :--- | :--- |

Eliminating useless rules (1)

[Boullier, 1998] shows a range of useful properties of simple RCG
that can help to make formal proofs and parsing easier.
Boullier defines clauses that cannot be used in derivations
$S(\langle 0, n\rangle) \stackrel{*}{\Rightarrow} \varepsilon$ for any $w \in T^{*}$ as useless.
Proposition 1 For each simple $k-R C G G$, there exists an equivalent simple $k^{\prime}-R C G G^{\prime}$ with $k^{\prime} \leq k$ that does not contain useless rules.

Eliminating useless rules (2)

The removal of the useless rules can be done in the same way as in the CFG case [Hopcroft and Ullman, 1979]:

1. All rules need to be eliminated that cannot lead to a terminal sequence.
This can be done recursively: Starting from the terminating rules and following the rules from right to left, the set of all non-terminals leading to terminals can be computed recursively.

Grammar Formalisms	5	LCFRS Normal Forms

Eliminating useless rules (3)

1. (continued)

We can characterize this set N_{T} with the following deduction rules:

$$
\overline{[A]} A(\vec{\alpha}) \rightarrow \varepsilon \in P
$$

$$
\frac{\left[A_{1}\right], \ldots,\left[A_{m}\right]}{[A]} A(\vec{\alpha}) \rightarrow A_{1}\left(\overrightarrow{\alpha_{1}}\right) \ldots A_{m}\left(\overrightarrow{\alpha_{m}}\right) \in P
$$

All rules that contain non-terminals in their right-hand side that are not in this set are eliminated.

Eliminating useless rules (4)

2. Then the unreachable rules need to be eliminated

This is done starting from all S-rules and moving from
left-hand sides to right-hand sides. If the right-hand side contains a predicate A, then all A-rules are reachable and so on. Each time, the rules for the predicates in a right-hand side are added.
We can characterize the set N_{S} of non-terminals reachable from S with the following deduction rules:
$\overline{[S]} \quad \frac{[A]}{\left[A_{1}\right], \ldots,\left[A_{m}\right]} A(\vec{\alpha}) \rightarrow A_{1}\left(\overrightarrow{\alpha_{1}}\right) \ldots A_{m}\left(\overrightarrow{\alpha_{m}}\right) \in P$
Rules whose left-hand side predicate is not in this set are eliminated.

Grammar Formalisms	7	LCFRS Normal Forms

Eliminating ε-rules (1)

[Boullier, 1998, Seki et al., 1991] show that the elimination of ε-rules is possible in a way similar to CFG. We define that a rule is an ε-rule if one of the arguments of the left-hand side is the empty string ε.

Definition $1 A$ simple $R C G$ is ε-free if it either contains no
ε-rules or there is exactly one rule $S(\varepsilon) \rightarrow \varepsilon$ and S does not appear
in any of the right-hand sides of the rules in the grammar.

Proposition 2 For every simple k-RCG G there exists an equivalent ε-free simple $k^{\prime}-R C G G^{\prime}$ with $k^{\prime} \leq k$

Eliminating ε-rules (2)

- First, we have to compute for all predicates A, all possibilities to have empty ranges among the components of the yields.
- For this, we introduce vectors $\vec{\iota} \in\{0,1\}^{\operatorname{dim}(A)}$ and we generate a set N_{ε} of pairs $(A, \vec{\iota})$ where $\vec{\iota}$ signifies that it is possible for A to have a tuple τ in its yield with $\tau(i)=\varepsilon$ if $\vec{\imath}(i)=0$ and $\tau(i) \neq \varepsilon$ if $\vec{\iota}(i) \neq 0$.

Example:
$S(X Y) \rightarrow A(X, Y), A(a, \varepsilon) \rightarrow \varepsilon, A(\varepsilon, a) \rightarrow \varepsilon, A(a, b) \rightarrow \varepsilon$

Set of pairs characterizing possibilities for ε-components:

$$
N_{\varepsilon}=\{(S, 1),(A, 10),(A, 01),(A, 11)\}
$$

Eliminating ε-rules (3)

The set N_{ε} is constructed recursively:

1. $N_{\varepsilon}=\emptyset$.
2. For every rule $A\left(x_{1}, \ldots, x_{\operatorname{dim}(A)}\right) \rightarrow \varepsilon$, add $(A, \vec{\iota})$ to N_{ε} with for all $1 \leq i \leq \operatorname{dim}(A): \vec{\iota}(i)=0$ if $x_{i}=\varepsilon$, else $\vec{\iota}(i)=1$.
3. Repeat until N_{ε} does not change any more:

For every rule $A\left(x_{1}, \ldots, x_{\operatorname{dim}(A)}\right) \rightarrow A_{1}\left(\alpha_{1}\right) \ldots A_{k}\left(\alpha_{k}\right)$ and all $\left(A_{1}, \vec{\iota}_{1}\right), \ldots,\left(A_{k}, \vec{l}_{k}\right) \in N_{\varepsilon}:$
Calculate a vector $\left(x_{1}^{\prime}, \ldots, x_{\operatorname{dim}(A)}^{\prime}\right)$ from $\left(x_{1}, \ldots, x_{\operatorname{dim}(A)}\right)$ by replacing every variable that is the j th variable of A_{m} in the right-hand side such that $\vec{\iota}_{m}(j)=0$ with ε.
Then add $(A, \vec{\iota})$ to N_{ε} with for all $1 \leq i \leq \operatorname{dim}(A): \vec{\iota}(i)=0$ if $x_{i}^{\prime}=\varepsilon$, else $\vec{\iota}(i)=1$.

Eliminating ε-rules (4)

Now that we have the set N_{ε} we can obtain reduced rules from the ones in the grammar where ε-arguments are left out.

Example:
$S(X Y) \rightarrow A(X, Y), A(a, \varepsilon) \rightarrow \varepsilon, A(\varepsilon, a) \rightarrow \varepsilon, A(a, b) \rightarrow \varepsilon$
$N_{\varepsilon}=\{(S, 1),(A, 10),(A, 01),(A, 11)\}$
Rules after ε-elimination $\left((A, \vec{\iota})\right.$ is written $\left.A^{\vec{\imath}}\right)$:

$$
\begin{aligned}
& S^{\prime}(X) \rightarrow S^{1}(X), \quad\left(S^{\prime} \text { takes care of the case of } \varepsilon \in L(G)\right) \\
& S^{1}(X) \rightarrow A^{10}(X), A^{10}(a) \rightarrow \varepsilon, \\
& S^{1}(X) \rightarrow A^{01}(X), A^{01}(b) \rightarrow \varepsilon \\
& S^{1}(X Y) \rightarrow A^{11}(X, Y), A^{11}(a, b) \rightarrow \varepsilon
\end{aligned}
$$

Eliminating ε-rules (5)

To obtain the new rules P_{ε}, we proceed as follows:

1. $P_{\varepsilon}=\emptyset$
2. We pick a new start symbol $S^{\prime} \notin N_{\varepsilon}$.

If $\varepsilon \in L(G)$, we add $S^{\prime}(\varepsilon) \rightarrow \varepsilon$ to P_{ε}.
If $S^{1} \in N_{\varepsilon}$, we add $S^{\prime}(X) \rightarrow S^{1}(X)$ to P_{ε}.
3. For every rule $A(\alpha) \rightarrow A_{1}\left(\vec{x}_{1}\right) \ldots A_{k}\left(\vec{x}_{k}\right) \in P$: add all ε-reductions of this rule to P_{ε}.

Eliminating ε-rules (6)
The ε-reductions of $A(\alpha) \rightarrow A_{1}\left(\vec{x}_{1}\right) \ldots A_{k}\left(\vec{x}_{k}\right)$ are obtained as
follows:
For all combinations of $\vec{\iota}_{1}, \ldots, \vec{\iota}_{k}$ such that $A_{i}^{\overrightarrow{\iota_{i}}} \in N_{\varepsilon}$ for $1 \leq i \leq k$:
(i) For all $i, 1 \leq i \leq k$: replace A_{i} in the rhs with $A_{i}^{\vec{t}_{i}}$ and for all j, $1 \leq j \leq \operatorname{dim}\left(A_{i}\right)$: if $\overrightarrow{\iota_{i}}(j)=0$, then remove the j th component of $A_{i}^{\vec{t}_{i}}$ from the rhs and delete the variable $\vec{x}_{i}(j)$ in the lhs.
(ii) Let $\vec{\iota} \in\{0,1\}^{\operatorname{dim}(A)}$ be the vector with $\vec{\iota}(i)=0$ iff the i th component of A is empty in the rule obtained from (i). Remove all ε-components in the lhs and replace A with $A^{\vec{l}}$.

Grammar Formalisms

13
LCFRS Normal Forms

Ordered Simple RCG (1)

In general, in MCFG/LCFRS/simple RCG, when using a rule in a derivation, the order of the components of its lhs in the input is not necessarily the order of the components in the rule.

Example:
$S(X Y) \rightarrow A(X, Y), A(a X b, c Y d) \rightarrow A(Y, X), A(e, f) \rightarrow \varepsilon$.
String language:
$\left\{(a c)^{n} e(d b)^{n}(c a)^{n} f(b d)^{n} \mid n \geq 0\right\}$
$\cup\left\{(a c)^{n} a f b(d b)^{n}(c a)^{n} \operatorname{ced}(b d)^{n} \mid n \geq 0\right\}$

Ordered Simple RCG (2)

Definition 2 (Ordered simple RCG) A simple RCG is ordered
if for every rule $A(\vec{\alpha}) \rightarrow A_{1}\left(\overrightarrow{\alpha_{1}}\right) \ldots A_{k}\left(\overrightarrow{\alpha_{k}}\right)$ and every
$A_{i}\left(\overrightarrow{\alpha_{i}}\right)=A_{i}\left(Y_{1}, \ldots, Y_{\operatorname{dim}\left(A_{i}\right)}\right) \quad(1 \leq i \leq k)$, the order of the
components of $\overrightarrow{\alpha_{i}}$ in $\vec{\alpha}$ is $Y_{1}, \ldots, Y_{\operatorname{dim}\left(A_{i}\right)}$.

Proposition 3 For every simple $k-R C G G$ there exists an equivalent ordered simple $k-R C G G^{\prime}$.
[Michaelis, 2001, Kracht, 2003, Kallmeyer, 2010]
In LCFRS terminology, this property is called monotone while in MCFG terminology, it is called non-permuting.

Ordered Simple RCG (3)

Idea of the transformation:

- We check for every rule whether the component order in one of the right-hand side predicates A does not correspond to the one in the left-hand side.
- If so, we add a new predicate that differs from A only with respect to the order of the components. We replace A in the rule with the new predicate with reordered components.
- Furthermore, we add a copy of every A-rule with A replaced in the left-hand side by the new predicate and reordering of the components.

We notate the permutations of components as vectors where the i th element is the image of i. For a predicate $A, i d$ is the vector $\langle 1,2, \ldots, \operatorname{dim}(A)\rangle$.

Ordered Simple RCG (4)

Transformation into an ordered simple RCG:
$P^{\prime}:=P$ with all predicates A replaced with $A^{i d}$;
$N^{\prime}:=\left\{A^{i d} \mid A \in N\right\} ;$
repeat until P^{\prime} does not change any more:
for all $r=A^{p}(\vec{\alpha}) \rightarrow A_{1}^{p_{1}}\left(\overrightarrow{\alpha_{1}}\right) \ldots A_{k}^{p_{k}}\left(\overrightarrow{\alpha_{k}}\right)$ in P^{\prime} :
for all $i, 1 \leq i \leq k$:
if $A_{i}^{p_{i}}\left(\overrightarrow{\alpha_{i}}\right)=A_{i}^{p_{i}}\left(Y_{1}, \ldots, Y_{\operatorname{dim}\left(A_{i}\right)}\right)$ and the order of the $Y_{1}, \ldots, Y_{\operatorname{dim}\left(A_{i}\right)}$ in $\vec{\alpha}$ is $p\left(Y_{1}, \ldots, Y_{\operatorname{dim}\left(A_{i}\right)}\right)$
where p is not the identity
then replace $A_{i}^{p_{i}}\left(\overrightarrow{\alpha_{i}}\right)$ in r with $A_{i}^{p_{i} o p}\left(p\left(\overrightarrow{\alpha_{i}}\right)\right)$
if $A_{i}^{p_{i} \circ p} \notin N^{\prime}$ then add $A_{i}^{p_{i} \circ p}$ to N^{\prime} and
for every $A_{i}^{p_{i}}$-rule $A_{i}^{p_{i}}(\vec{\gamma}) \rightarrow \Gamma \in P^{\prime}$:
add $A_{i}^{p_{i} \circ p}(p(\vec{\gamma})) \rightarrow \Gamma$ to P^{\prime}
Grammar Formalisms $17 \quad$ LCFRS Normal Forms

Ordered Simple RCG (5)

Consider again our example
$P^{\prime}=\{S(X Y) \rightarrow A(X, Y), A(a X b, c Y d) \rightarrow A(Y, X), A(e, f) \rightarrow \varepsilon\}$.

- Problematic rule: $A^{\langle 1,2\rangle}(a X b, c Y d) \rightarrow A^{\langle 1,2\rangle}(Y, X)$
- Introduce new non-terminal $A^{\langle 2,1\rangle}$ where $\langle 2,1\rangle$ is the permutation that switches the two arguments. Replace $A^{\langle 1,2\rangle}(a X b, c Y d) \rightarrow A^{\langle 1,2\rangle}(Y, X)$ with $A^{\langle 1,2\rangle}(a X b, c Y d) \rightarrow A^{\langle 2,1\rangle}(X, Y)$.
- Add $A^{\langle 2,1\rangle}(f, e) \rightarrow \varepsilon$ and $A^{\langle 2,1\rangle}(c Y d, a X b) \rightarrow A^{\langle 2,1\rangle}(X, Y)$.
- Now, $A^{\langle 2,1\rangle}(c Y d, a X b) \rightarrow A^{\langle 2,1\rangle}(X, Y)$ is problematic. $\langle 2,1\rangle \circ\langle 2,1\rangle=\langle 1,2\rangle$, therefore we replace this rule with $A^{\langle 2,1\rangle}(c Y d, a X b) \rightarrow A^{\langle 1,2\rangle}(Y, X) . A^{\langle 1,2\rangle}$ is no new non-terminal, so no further rules are added.

Ordered Simple RCG (6)

Result:

$$
\begin{array}{ll}
S^{\langle 1\rangle}(X Y) \rightarrow A^{\langle 1,2\rangle}(X, Y) & A^{\langle 1,2\rangle}(e, f) \rightarrow \varepsilon \\
A^{\langle 1,2\rangle}(a X b, c Y d) \rightarrow A^{\langle 2,1\rangle}(X, Y) & A^{\langle 2,1\rangle}(f, e) \rightarrow \varepsilon \\
A^{\langle 2,1\rangle}(c Y d, a X b) \rightarrow A^{\langle 1,2\rangle}(Y, X) &
\end{array}
$$

Note that in general, this transformation algorithm is exponential in the size of the original grammar

Binarization (1)

In LCFRS terminology, the length of the right-hand side of a production is called its rank. The rank of an LCFRS is given by the maximal rank of its productions.

Proposition 4 For every simple $R C G / L C F R S G$ there exists an equivalent simple $R C G / L C F R S G^{\prime}$ that is of rank 2.

Unfortunately, the fan-out of G^{\prime} might be higher than the fan-out of G.

The transformation can be performed similarly to the CNF transformation for CFG
[Hopcroft and Ullman, 1979, Grune and Jacobs, 2008].

Binarization (2)

Example:

$S(X Y Z U V W) \rightarrow A(X, U) B(Y, V) C(Z, W)$	
$A(a X, a Y) \rightarrow A(X, Y)$	$A(a, a) \rightarrow \varepsilon$
$B(b X, b Y) \rightarrow B(X, Y)$	$B(b, b) \rightarrow \varepsilon$
$C(c X, c Y) \rightarrow C(X, Y)$	$C(c, c) \rightarrow \varepsilon$

Equivalent binarized grammar:

$$
\begin{aligned}
& S(X P U Q) \rightarrow A(X, U) C_{1}(P, Q) \quad C_{1}(Y Z, V W) \rightarrow B(Y, V) C(Z, W) \\
& A(a X, a Y) \rightarrow A(X, Y) \quad A(a, a) \rightarrow \varepsilon \\
& B(b X, b Y) \rightarrow B(X, Y) \quad B(b, b) \rightarrow \varepsilon \\
& C(c X, c Y) \rightarrow C(X, Y) \quad C(c, c) \rightarrow \varepsilon
\end{aligned}
$$

Grammar Formalisms
21
LCFRS Normal Forms

Kallmeyer
Sommersemester 2011

Binarization (3)

We define the reduction of a vector $\overrightarrow{\alpha_{1}} \in\left[(T \cup V)^{*}\right]^{k_{1}}$ by a vector $\vec{x} \in\left(V^{*}\right)^{k_{2}}$ where all variables in \vec{x} occur in $\overrightarrow{\alpha_{1}}$ as follows:
Take all variables from $\overrightarrow{\alpha_{1}}$ (in their order) that are not in \vec{x} while starting a new component in the resulting vector whenever an element is, in $\overrightarrow{\alpha_{1}}$, the first element of a component or preceded by a variable from \vec{x} or a terminal.

Examples:

1. $\left\langle a X_{1}, X_{2}, b X_{3}\right\rangle$ reduced with $\left\langle X_{2}\right\rangle$ yields $\left\langle X_{1}, X_{3}\right\rangle$.
2. $\left\langle a X_{1} X_{2} b X_{3}\right\rangle$ reduced with $\left\langle X_{2}\right\rangle$ yields $\left\langle X_{1}, X_{3}\right\rangle$ as well.

Binarization (4)

Transformation into a simple RCG of rank 2
for all $r=A(\vec{\alpha}) \rightarrow A_{0}\left(\overrightarrow{\alpha_{0}}\right) \ldots A_{m}\left(\overrightarrow{\alpha_{m}}\right)$ in P with $m>1$:
remove r from P and pick new non-terminals C_{1}, \ldots, C_{m-1}
$R:=\emptyset$
add the rule $A(\vec{\alpha}) \rightarrow A_{0}\left(\overrightarrow{\alpha_{0}}\right) C_{1}\left(\overrightarrow{\gamma_{1}}\right)$ to R where $\overrightarrow{\gamma_{1}}$
is obtained by reducing $\vec{\alpha}$ with $\overrightarrow{\alpha_{0}}$
for all $i, 1 \leq i \leq m-2$:
add the rule $C_{i}\left(\overrightarrow{\gamma_{i}}\right) \rightarrow A_{i}\left(\overrightarrow{\alpha_{i}}\right) C_{i+1}\left(\overrightarrow{\gamma_{i+1}}\right)$ to R where γ_{i+1} is obtained by reducing $\overrightarrow{\gamma_{i}}$ with $\overrightarrow{\alpha_{i}}$
add the rule $C_{m-1}\left(\gamma_{m-2}\right) \rightarrow A_{m-1}\left(\alpha_{m-1}\right) A_{m}\left(\overrightarrow{\alpha_{m}}\right)$ to R
for every rule $r^{\prime} \in R$
replace rhs arguments of length >1 with new variables (in both sides) and add the result to P

Grammar Formalisms
23
LCFRS Normal Forms

Binarization (5)

In our example, for the rule
$S(X Y Z U V W) \rightarrow A(X, U) B(Y, V) C(Z, W)$, we obtain

$$
R=\left\{\begin{array}{ll}
& S(X Y Z U V W) \rightarrow A(X, U) C_{1}(Y Z, V W), \\
& C_{1}(Y Z, V W) \rightarrow B(Y, V) C(Z, W)
\end{array}\right\}
$$

Collapsing sequences of adjacent variables in the rhs leads to the two rules
$S(X P U Q) \rightarrow A(X, U) C_{1}(P, Q), C_{1}(Y Z, V W) \rightarrow B(Y, V) C(Z, W)$

References

[Boullier, 1998] Boullier, P. (1998). A Proposal for a Natural Language Processing Syntactic Backbone. Technical Report 3342, INRIA.
[Grune and Jacobs, 2008] Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide. Monographs in Computer Science. Springer. Second Edition
[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D (1979). Introduction to Automata Theory, Languages and Computation. Addison Wesley.
[Kallmeyer, 2010] Kallmeyer, L. (2010). Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Heidelberg.
[Kracht, 2003] Kracht, M. (2003). The Mathematics of Language

Grammar Formalisms	25	LCFRS Normal Forms

Number 63 in Studies in Generative Grammar. Mouton de Gruyter, Berlin.
[Michaelis, 2001] Michaelis, J. (2001). On Formal Properties of Minimalist Grammars. PhD thesis, Potsdam University.
[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theoretical

Computer Science, 88(2):191-229.

