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Introduction (1)

Discontinuous constituents and non-projective dependencies are

rather frequent, in particular in so-called free word order languages.

Fronting example from German:

S

VP

VP

PROAV VMFIN VVPP VAINF

darüber muß nachgedacht werden

about it must thought be

“It must be thought about it”
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Introduction (2)

root aux

pp aux

r Darüber muß nachgedacht werden

PROAV VMFIN VVPP VAINF

Appr. 25% of the sentences in Negra display discontinuous

constituents.
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Introduction (3)

• CFGs cannot describe discontinuous constituents.

• Therefore, if we want to learn a grammar model that includes

discontinuous constituents, we need a formalism with an

extended domain of locality.

• [Kallmeyer and Maier, 2010, Maier, 2010,

Maier and Kallmeyer, 2010] use Linear Context-Free Rewriting

Systems.

LCFRS can be conceived as a natural extension of CFG and many

of the PCFG parsing techniques can be applied to probabilistic

LCFRS.
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Weighted Deductive Parsing (1)

Idea of weighted deductive parsing [Nederhof, 2003]:

• Give a deductive definition of the probability of a parse tree.

• Use Knuth’s algorithm to compute the best parse tree for

category S and a given input w.

Advantage:

• Yields the best parse without exhaustive parsing.

• Can be used to parse any grammar formalism as long as an

appropriate weighted deductive system can be defined.
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Weighted Deductive Parsing (2)

• A probabilistic context-free grammar (PCFG) is a CFG whose

productions are equipped with probabilities.

• It holds that for every non-terminal A, the sum of the

probabilities of all A-rules is 1.

Example:

.8 VP → V NP

.2 VP → VP PP

1 NP → Det N

1 PP → P NP

.1 N → N PP

1 V → sees

1 Det → the

1 P → with

.6 N → man

.3 N → telescope
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Weighted Deductive Parsing (3)

Goal: for a given input, find the parse tree with the highest

probability.

• Probability of a parse tree: product of the probabilities of the

rules used to generate the parse tree.

• Probability of a category A spanning a string w: maximal

probability of parse trees with root label A and yield w.

VP

VP PP

V NP P NP

sees Det N with Det N

the man the telescope

VP

V NP

sees Det N

the N PP

man P NP

with Det N

the telescope

p = 0.6 · 0.8 · 0.2 · 0.3 = 0.0288 p = 0.6 · 0.8 · 0.1 · 0.3 = 0.0144

p(VP,sees the man with the telescope) = 0.0288
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Weighted Deductive Parsing (4)

Example: Bottom-up CFG parsing (CYK) with Chomsky Normal

Form.

For an input w = w1 · · ·wn with |w| = n,

1. Item form [A, i, j] with A a non-terminal, 0 ≤ i ≤ j ≤ n.

2. Deduction rules:

Scan:
[A, i− 1, i]

A → wi

Complete:
[B, i, j], [C, j, k]

[A, i, k]
A → B C

3. Goal item: [S, 0, n].
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Weighted Deduction Parsing (5)

Extension to a weighted deduction system:

• Each item has an additional weight. Intuition: weight = costs

to build an item.

• The deduction rules specify how to compute the weight of the

consequent item form the weights of the antecedent items.

Example:

Scan:
|log(p)| : [A, i− 1, i]

p : A → wi

Complete:
x1 : [B, i, j], x2 : [C, j, k]

x1 + x2 + |log(p)| : [A, i, k]
p : A → B C
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Weighted Deduction Parsing (6)

• There is a linear order < defined on the weights.

• The lower the weight, the better the item.

• For Knuth’s algorithm, the weight functions f must be

monotone nondecreasing in each variable and

f(x1, . . . , xm) ≥ max(x1, . . . , xm).

In our example, this is the case:

Complete:
x1 : [B, i, j], x2 : [C, j, k]

x1 + x2 + |log(p)| : [A, i, k]
p : A → B C

f(x1, x2) = x1 + x2 + c where c ≥ 0 is a constant.
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Weighted Deduction Parsing (7)

Algorithm for computing the goal item with the lowest weight, goes

back to Knuth.

Goal: Find possible items with their lowest possible weight.

We need two sets:

• A set C (the chart) that contains items that have reached their

final weight.

• A set A (the agenda) that contains items that are waiting to be

processed as possible antecendents in further rule applications

and that have not necessarily reached their final weight.

Initially, C = ∅ and A contains all items that can be deduced from

an empty antecedent set. Their weights are the minima of the

possible weights.
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Weighted Deductive Parsing (8)

while A 6= ∅ do

remove the best item x : I from A and add it to C

if I goal item

then stop and output true

else

for all y : I ′ deduced from x : I and items in C:

if there is no z with z : I ′ ∈ C or z : I ′ ∈ A

then add y : I ′ to A

else if z : I ′ ∈ A for some z

then update weight of I ′ in A to min(y, z)
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Weighted Deductive Parsing (9)

If the weight functions are as required, then the following is

guaranteed:

• Whenever an item is the best in the agenda, you have found its

lowest weight.

• Therefore, if this item is a goal item, then you have found the

best parse tree for your input.

• If it is no goal item, you can store it in the chart.

⇒ no exhaustive parsing needed.

However: A needs to be treated as a priority queue which can be

expensive.
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Weighted Deductive Parsing (10)

.2 S → AB

.8 S → CD

1 A → a

1 C → ab

1 B → bc

.5 D → c .5 D → e

Input: abc

Chart

0 : [A, 0, 1]

0 : [A, 0, 1], 0 : [B, 1, 3]

0 : [A, 0, 1], 0 : [B, 1, 3],

0 : [C, 0, 2]

0 : [A, 0, 1], 0 : [B, 1, 3],

0 : [C, 0, 2], 0.3 : [D, 2, 3]

Agenda

0 : [A, 0, 1], 0 : [B, 1, 3], 0 : [C, 0, 2],

0.3 : [D, 2, 3]

0 : [B, 1, 3], 0 : [C, 0, 2], 0.3 : [D, 2, 3]

0 : [C, 0, 2], 0.3 : [D, 2, 3], 0.7 : [S, 0, 3]

0.3 : [D, 2, 3], 0.7 : [S, 0, 3]

0.4 : [S, 0, 3], 0.7 : [S, 0, 3]
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Weighted Deductive Parsing (11)

Extension to parsing:

• Whenever we generate a new item, we store it not only with its

weight but also with backpointers to its antecedent items.

• Whenever we update the weight of an item, we also have to

update the backpointers.

In order to read off the best parse tree, we have to start from the

best goal item and follow the backpointers.
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PLCFRS Parsing (1)

A probabilistic LCFRS (PLCFRS) is a tuple 〈N, T, V, P, S, p〉 such

that

1. 〈N, T, V, P, S〉 is a LCFRS and

2. p : P → [0..1] a function such that for all A ∈ N :

Σ
A(~x)→~Φ∈P

p(A(~x) → ~Φ) = 1.
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PLCFRS Parsing (2)

Example:

0.2 : S(X) → A(X) 0.8 : S(XY ) → B(X, Y )

0.7 : A(aX) → A(X) 0.3 : A(a) → ε

0.8 : B(aX, aY ) → B(X, Y ) 0.2 : B(a, a) → ε

String language is a+. Words with an even number of as and

nested dependencies are more probable than words with a

right-linear dependency structure.

The two analyses of aa:

p = 0.16

S

B

a a

p = 0.042

S

A

a A

a
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PLCFRS Parsing (3)

Weighted deductive CYK parsing:

Scan:
0 : [A, 〈〈i, i + 1〉〉]

A POS tag of wi+1

Unary:
in : [B, ~ρ]

in + |log(p)| : [A, ~ρ]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC]

inB + inC + |log(p)| : [A, ~ρA]

where p : A( ~ρA) → B( ~ρB)C( ~ρC) is an instantiated rule.

Goal: [S, 〈〈0, n〉〉]
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PLCFRS Parsing (4)

Parsing of aa with sample grammar:

chart agenda

0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉],

0.7 : [B, 〈0, 1〉, 〈1, 2〉]

0.5 : [A, 〈0, 1〉] 0.5 : [A, 〈1, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉],

1.2 : [S, 〈0, 1〉]

0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉] 0.65 : [A, 〈0, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉],

1.2 : [S, 〈0, 1〉], 1.2 : [S, 〈1, 2〉]

0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉], 1.2 : [S, 〈0, 1〉],

0.65 : [A, 〈0, 2〉] 1.2 : [S, 〈1, 2〉], 1.35 : [S, 〈0, 2〉]

0.5 : [A, 〈0, 1〉], 0.5 : [A, 〈1, 2〉], 0.8 : [S, 〈0, 2〉], 1.2 : [S, 〈0, 1〉],

0.65 : [A, 〈0, 2〉], 0.7 : [B, 〈0, 1〉, 〈1, 2〉] 1.2 : [S, 〈1, 2〉]
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Grammar Extraction: Treebank Grammar (1)

Advantage of LCFRS: It can be straightforwardly extracted from

treebanks with crossing branches [Maier and Søgaard, 2008].

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden

PROAV(Darüber) → ε VMFIN(muß) → ε

VVPP(nachgedacht) → ε VAINF(werden) → ε

S1(X1X2X3) → VP2(X1, X3) VMFIN(X2)

VP2(X1, X2X3) → VP2(X1, X2) VAINF(X3)

VP2(X1, X2) → PROAV(X1) VVPP(X2)
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Grammar Extraction: Treebank Grammar (2)

For a given treebank tree 〈V, E, r, l〉 where V is the set of nodes,

E ⊂ V × V the set of immediate dominance edges, r ∈ V the root

node and l : V → N ∪ T the labeling function, the algorithm

constructs the following rules: Let us assume that w1, . . . , wn are

the terminal labels of the leaves in 〈V, E, r〉 with a linear

precedence relation wi ≺ wj for 1 ≤ i < j ≤ n. We introduce a

variable Xi for every wi, 1 ≤ i ≤ n.

• For every pair of nodes v1, v2 ∈ V with 〈v2, v2〉 ∈ E, l(v2) ∈ T ,

we add l(v1)(l(v2)) → ε to the rules of the grammar.
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Grammar Extraction: Treebank Grammar (3)

• For every node v ∈ V with l(v) = A0 /∈ T such that there are

exactly m nodes v1, . . . , vm ∈ V (m ≥ 1) with 〈v, vi〉 ∈ E and

l(vi) = Ai /∈ T for all 1 ≤ i ≤ m, we now create a rule

A0(x
(0)
1 , . . . , x

(0)
dim(A0)

)

→ A1(x
(1)
1 , . . . , x

(1)
dim(A1)

) . . .Am(x
(m)
1 , . . . , x

(m)
dim(Am))

where for the Ai, 0 ≤ i ≤ m, the following must hold:

1. The concatenation of all arguments of Ai, x
(i)
1 . . . x

(i)
dim(Ai)

is

the concatenation of all X ∈ {Xi | 〈vi, v
′

i〉 ∈ E∗ with

l(v′

i) = wi} such that Xi precedes Xj if i < j, and

2. a variable Xj with 1 ≤ j < n is the right boundary of an

argument of Ai if and only if Xj+1 /∈ {Xi | 〈vi, v
′

i〉 ∈ E∗

with l(v′

i) = wi}, i.e., an argument boundary is introduced

at each discontinuity.
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As a further step, in this new rule, all right-hand side

arguments of length > 1 are replaced in both sides of the rule

with a single new variable.

Finally, all non-terminals A in the rules are equipped with an

additional subscript dim(A) which gives us the final

non-terminal in our LCFRS.

The probabilities are then computed based on the frequencies of

rules in the treebank, using a Maximum Likelihood estimator

(MLE).
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Grammar Extraction: Binarization (1)

Binarization of the extracted LCFRSs: as in the CNF

transformation for CFG:

• We introduce a non-terminal for each RHS longer than 2 and

split the rule into two rules, using this new intermediate

non-terminal.

This is repeated until all RHS are of length 2.

• Before binarizing, we reorder the RHS such that a

head-outward binarization is obtained: First, all elements to

the right of the head are listed in reverse order, then all

elements to the left of the head in their original order and then

the head itself.
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Grammar Extraction: Binarization (2)

S

VP

NN VMFIN NN AV VAINF

das muß man jetzt machen

that must one now do

“One has to do that now”

Rule extracted for the S node:

S(XY ZU) → VP(X, U) VMFIN(Y ) NN(Z)

Reordering for head-outward binarization:

S(XY ZU) → NN(Z) VP(X, U) VMFIN(Y )
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Grammar Extraction: Binarization (3)

Result of binarizing the tree:

S

Sbin1

VP

VPbin1

Sbin2 VPbin2

NN VMFIN NN AV VAINF
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Grammar Extraction: Markovization (1)

Proposed in [Collins, 1999] for PCFGs.

• Introduce only a single new non-terminal for the new rules

obtained during binarization;

• add vertical and horizontal context from the original trees to

each occurrence of this new non-terminal.

• As vertical context, we add the first v labels on the path from

the root node of the tree that we want to binarize to the root

of the entire treebank tree.

• As horizontal context, during binarization of a rule

A(~α) → A0( ~α0) . . .Am( ~αm), for the new non-terminal that

comprises the RHS elements Ai . . .Am (for some 1 ≤ i ≤ m),

we add the first h elements of Ai, Ai−1, . . . , A0.
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Grammar Extraction: Markovization (2)

Markovization with v = 1, h = 2

S

XS
VP,NN

VP

XVP

ADV ,NN

XS

VMFIN ,VP
XVP

VAINF ,ADV

NN VMFIN NN ADV VAINF
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Evaluation (1)

Data: NeGra treebank [Skut et al., 1997], all sentences of length

≤ 30. Separation into the first 90% as training set and the

remaining 10% as test set.

training test

number of sentences 16,502 1,833

av. sentence length 14.56 14.62

av. tree height 4.62 4.72

av. children per node 2.96 2.94

sentences without gaps 12,481 (75.63%) 1,361 (74.25%)

sent. with one gap 3,320 (20.12%) 387 (21.11%)

sent. with ≥ 2 gaps 701 (4.25%) 85 (4.64%)

max. gap number 6 5
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Evaluation (2)

For the evaluation of the constituency parses, we use an

EVALB-style metric: For a tree over a string w, a single

constituency is represented by a tuple 〈A, ~ρ〉 with A a node label

and ~ρ ∈ (Pos(w) × Pos(w))dim(A).

We compute precision, recall and F1 based on these tuples from

gold and parsed test data:

• Precision:
number of correct parsed constituencies

number of parsed constituencies

• Recall:
number of correct parsed constituencies

number of gold constituencies

• F is the harmonic mean of precision and recall:

F = 2 ·
precision·recall
precision+recall

.
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Evaluation (3)

Markovization settings v = 1 and h = 2.

PLCFRS PCFG

LP 73.76 75.37

LR 74.41 75.83

LF1 74.09 75.60

UP 77.05 78.41

UR 77.72 78.89

UF1 77.38 78.65

PCFG = same experiment but with a version of NeGra where

crossing branches are eliminated before parsing (i.e., a

“context-free” version of NeGra).
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The parser is implemented in Java and freely available under GPL:

http://www.wolfgang-maier.net/rparse
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Conclusion

• LCFRS have an extended domain of locality; their

non-terminals can span discontinuous tuples of strings.

• LCFRS can be straightforwardly extracted from constituency

treebanks with crossing branches.

• Data-driven PLCFRS parsing of constituency treebanks yields

competitive results, compared to PCFG parsing.
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