
Mildly Context-Sensitive Grammar

Formalisms:

Linear Context-Free Rewriting
Languages: Formal Properties

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

Grammar Formalisms 1 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Overview

1. Pumping Lemma

(a) Intuition

(b) The Pumping Lemma

(c) Applications

2. Closure Properties

(a) Substitution

(b) Union, Concatenation, Kleene closure

(c) Intersection with Regular Languages

Grammar Formalisms 2 LCFRL: Language Properties

Pumping Lemma: Intuition (1)

LCFRS have a context-free backbone: the productions constitute a

generalized context-free grammar. A derivation step consists of

replacing a lhs of a production with its rhs.

Example (LCFRS for the copy language):

S → f1[A] A → f2[A] A → f3[A] A → f4[] A → f5[]

f1[〈X, Y, Z〉] = 〈XY Z〉 f4[] = 〈a, a, a〉

f2[〈X, Y, Z〉] = 〈aX, aY, aZ〉 f5[] = 〈b, b, b〉

f3[〈X, Y, Z〉] = 〈bX, bY, bZ〉

Derivation in underlying generalized CFG:

S ⇒ f1(A) ⇒ f1(f3(A)) ⇒ f1(f3(f2(A))) ⇒ f1(f3(f2(f4())))

The term f1(f3(f2(f4()))) denotes 〈baabaa〉.

Grammar Formalisms 3 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Pumping Lemma: Intuition (2)

• In such a derivation, the expansion of a non-terminal A does

not depend on the context A occurs in.

• Consequently, as in the case of CFG, if we have a derivation

A
+
⇒ f1(. . . f2(. . . fk(. . .A . . .) . . .) . . .)

then this part of the derivation can be iterated, i.e., we can also

have

A
+
⇒ f1(. . . f2(. . . fk(. . . f1(. . . f2(. . . fk(. . .A . . .) . . .) . . .) . . .) . . .) . . .)

etc.

Grammar Formalisms 4 LCFRL: Language Properties

Pumping Lemma (1)

Question: What does this mean for the string language?

Assume that we have such an iteration, i.e., in the derivation tree,

we have

A

A

with no other derivation B
+
⇒ B in the subtree corresponding to

A
+
⇒ A. The part between the two A nodes can be iterated.

Grammar Formalisms 5 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Pumping Lemma (2)

• Let m be the fan-out (the arity) of A. Then the higher A spans

an m-tuple of strings and the lower A spans a (smaller)

m-tuple of strings that is part of the m-tuple of the higher A.

Assume that 〈w1, . . . , wm〉 is the span of the lower A.

• There are different cases for how the components of the lower

A are part of the span of the higher A. Either wi is part of the

ith component (1 ≤ i ≤ m) or there are components of the

higher A that do not contain parts of the span of the lower A.

Grammar Formalisms 6 LCFRL: Language Properties

Pumping Lemma (3)

Case 1: wi is part of the ith component of the higher A

(1 ≤ i ≤ m). Then the span of the higher A has the form

〈v1w1u1, . . . , vmwmum〉.

Consequently (iteration), 〈vk
1w1u

k
1 , . . . , vk

mwmuk
m〉 is also in the

yield of A.

Example:

S(XY) → A(X, Y), A(aXb, cY d) → A(X, Y), A(ab, cd) → ε

A

A

a a b b c c d d

Iteration:

anabbncncddn

The iterated parts are present in the original string (in the tree

with just two As on the path).

Grammar Formalisms 7 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Pumping Lemma (4)

Case 2: The w1, . . . , wm are part of only j components (j < m) of

the span of the higher A. Then, when iterating, the components of

the higher A go again into only j components, i.e., the m − j

components that do not contain any of the w1, . . . , wm must be

added to the other ones.

Consequently, in a component of the higher A, we either have the

form v1wiv2wi+1 . . . vk−1wi+kvk or a form u (without components

from the lower A).

In the next iteration, the u will be added to one of the other

components. This can be repeated and will lead to iterations of

strings that are concatenations of some of the u and some of the vi.

These iterated strings are not necessarily present in the span of the

higher A, before iteration.

Grammar Formalisms 8 LCFRL: Language Properties

Pumping Lemma (5)

Example:

S(XY ZU) → A(XY Z, U), A(XbY, c) → A(X, Y), A(d, d) → ε

A

A

A

A

d b d b c b c c

Iteration pattern: dbd(bc)nc

Here, the iterated parts are not present in the original string (in

the tree with just two As on the path).

Grammar Formalisms 9 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Pumping Lemma (6)

Along these lines, [Seki et al., 1991] show the following pumping

lemma for k-MCFLs, the class of languages generated by k-MCFGs:

Proposition 1 (Pumping Lemma for k-MCFLs) For any

k-MCFL L, if L is an infinite set then there exist some uj ∈ T ∗

(1 ≤ j ≤ k + 1), vj , wj , sj ∈ T ∗(1 ≤ j ≤ k) which satisfy the

following conditions:

1. Σk
j=1|vjsj| > 0, and

2. for any i ≥ 0,

zi = u1v
i
1w1s

i
1u2v

i
2w2s

i
2 . . . ukvi

kwksi
kuk+1 ∈ L

Grammar Formalisms 10 LCFRL: Language Properties

Pumping Lemma (7)

• Note that the pumping lemma is only existential in the sense

that it does not say that within each string that is long enough

we find pumpable substrings.

• It only says that there exist strings in the language that are of

a limited length and that contain pumpable substrings.

• In contrast to this, the CFG pumping lemma is universal:

within every string of sufficient length we find two pumpable

substrings of a limited distance.

Grammar Formalisms 11 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Pumping Lemma: Applications (1)

Proposition 2 For every k ≥ 1, the language

{an
1an

2 . . . an
2k+1 |n ≥ 0} is not a k-MCFL.

Proof: Assume that it is a k-MCFL. Then it satisfies the pumping

lemma with 2k pumpable strings. At least one of these strings is

not empty and none of them can contain different terminals.

However, if at most 2k strings are pumped, we necessarily obtain

strings that are not in the language. Contradiction.

Grammar Formalisms 12 LCFRL: Language Properties

Pumping Lemma: Applications (2)

For every k ≥ 1, the language {an
1an

2 . . . an
2k+1 |n ≥ 0} is a

(k + 1)-MCFL.

It is generated by an MCFG/LCFRS with the following rules:

S(X1X2 . . .XkXk+1) → A(X1, X2, . . . , Xk, Xk+1)

A(a1X1a2, a3X2a4, . . . , a2k−1Xka2k, a2k+1Xk+1) → A(X1, X2, . . . , Xk, Xk+1)

A(ε, . . . , ε) → ε

Proposition 3 k-MCFL is a proper subset of (k + 1)-MCFL.

Grammar Formalisms 13 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Closure Properties

[Seki et al., 1991] show the following closure properties for

k-MCFL:

Proposition 4 For every k ≥ 1, the class k-MCFL

• is closed under substitution;

• is closed under union, concatenation, Kleene closure, ε-free

Kleene closure;

• is closed under intersection with regular languages.

Grammar Formalisms 14 LCFRL: Language Properties

Closure Properties: Substitution

k-MCFL being closed under substitution means:

If L is a k-MCFL over the terminal alphabet T and f assigns a

k-MCFL to every t ∈ T , then

f(L) = {w1 . . . wn | there is a t1 . . . tn ∈ L with

wi ∈ f(ti) for 1 ≤ i ≤ n}

is also a k-MCFL.

Idea of the construction of the new k-MCFG from the original one

and the ones for the images of the terminals: take the original and

replace every terminal a in a lhs with a new variable Xa and add

Sa(Xa) to the rhs where Sa the start symbol of the grammar of the

image of a.

Grammar Formalisms 15 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Closure Properties: Union and Concatenation

Let L1, L2 be languages generated by the k-MCFGs G1, G2 with

start symbols S1, S2 respectively (and without loss of generality

disjoint sets of non-terminals).

• The union, L1 ∪ L2 is generated by the grammar with the rules

from G1 and G2 and additional rules S(X) → S1(X),

S(X) → S2(X) where S is a new start symbol.

• The concatenation {w1w2 |w1 ∈ L1, w2 ∈ L2} is generated by

the grammar with the rules from G1 and G2 and an additional

rule S(XY) → S1(X)S2(Y) where S is a new start symbol.

Grammar Formalisms 16 LCFRL: Language Properties

Closure Properties: Kleene star

Let L be a language generated by the k-MCFGs G.

• If we add the rules S′(XY) → S(X)S′(Y) and S′(ε) → ε where

S′ is a new start symbol, we generate the Kleene closure L∗ of

L.

• If we add the rules S′(XY) → S(X)S′(Y) and S′(X) → S(X)

where S′ is a new start symbol, we generate the ε-free Kleene

closure L+ of L.

Grammar Formalisms 17 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Closure Properties: Intersection with regular lang. (1)

Construction idea: enrich the non-terminals A with lists of states

q1, q
′

1, . . . , qdim(A), q
′

dim(A) where the path from qi to q′i is the path

traversed while processing the ith component of A.

Example:

Take the copy language, generated by an MCFG with

S(XY) → A(X, Y)

A(aX, aY) → A(X, Y) A(bX, bY) → A(X, Y) A(ε, ε) → ε

Intersect with a∗b∗a∗b∗, generated by a DFA with

Q = F = {q0, q1, q2, q3}, initial state q0 and

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, b) = q1, δ(q1, a) = q2,

δ(q2, a) = q2, δ(q2, b) = q3, δ(q3, b) = q3.

Grammar Formalisms 18 LCFRL: Language Properties

Closure Properties: Intersection with regular lang. (2)

Result:

a∗ S[q0, q0](XY)→ A[q0, q0, q0, q0](X, Y),

A[q0, q0, q0, q0](aX, aY)→ A[q0, q0, q0, q0](X,Y),

A[q0, q0, q0, q0](ε, ε)→ ε

b+ S[q0, q1](XY)→ A[q0, q1, q1, q1](X, Y),

A[q0, q1, q1, q1](bX, bY)→ A[q1, q1, q1, q1](X, Y),

A[q1, q1, q1, q1](bX, bY)→ A[q1, q1, q1, q1](X, Y),

A[q1, q1, q1, q1](ε, ε)→ ε

a+b+a+b+ S[q0, q3](XY)→ A[q0, q1, q1, q3](X, Y),

A[q0, q1, q1, q3](aX, aY)→ A[q0, q1, q2, q3](X,Y),

A[q0, q1, q2, q3](aX, aY)→ A[q0, q1, q2, q3](X,Y),

A[q0, q1, q2, q3](bX, bY)→ A[q1, q1, q3, q3](X, Y),

A[q1, q1, q3, q3](bX, bY)→ A[q1, q1, q3, q3](X, Y),

A[q1, q1, q3, q3](ε, ε)→ ε

Grammar Formalisms 19 LCFRL: Language Properties

Kallmeyer Sommersemester 2011

Closure Properties: Intersection with regular lang. (3)

Proposition 5 [Kallmeyer, 2010]

L = {(ambm)n |m, n ≥ 1} is not an MCFL.

Proof: We assume that there is a fixed k such that there is a

k-MCFG generating L.

We intersect L with the regular language (a+b+)k+1, which yields

L′ = {(ambm)k+1 |m ≥ 1}. L′ does not satisfy the pumping lemma

for k-MCFL since the iterated parts in the pumping lemma must

each consist of either as or bs (otherwise we would increase the

number of substrings am and bm when iterating). Furthermore, if

we have at most 2k iterated parts, the iterations necessarily lead to

words where the am and bm parts no longer have all the same

exponent. Consequently, L′ and therefore also L are not k-MCFLs.

Since this holds for any k, L is not an MCFL.

Grammar Formalisms 20 LCFRL: Language Properties

References

[Kallmeyer, 2010] Kallmeyer, L. (2010). Parsing Beyond

Context-Free Grammars. Cognitive Technologies. Springer,

Heidelberg.

[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami,

T. (1991). On multiple context-free grammars. Theoretical

Computer Science, 88(2):191–229.

Grammar Formalisms 21 LCFRL: Language Properties

