Mildly Context-Sensitive Grammar
 Formalisms:

 Linear Context-Free Rewriting

 Linear Context-Free Rewriting
 Languages: Formal Properties

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf
Sommersemester 2011

Overview

1. Pumping Lemma
(a) Intuition
(b) The Pumping Lemma
(c) Applications
2. Closure Properties
(a) Substitution
(b) Union, Concatenation, Kleene closure
(c) Intersection with Regular Languages

Pumping Lemma: Intuition (1)
LCFRS have a context-free backbone: the productions constitute a generalized context-free grammar. A derivation step consists of replacing a lhs of a production with its rhs.

Example (LCFRS for the copy language):

$S \rightarrow f_{1}[A] \quad A \rightarrow f_{2}[A]$	$A \rightarrow f_{3}[A] \quad A \rightarrow f_{4}[]$	$A \rightarrow f_{5}[]$
$f_{1}[\langle X, Y, Z\rangle]=\langle X Y Z\rangle$	$f_{4}[]=\langle a, a, a\rangle$	
$f_{2}[\langle X, Y, Z\rangle]=\langle a X, a Y, a Z\rangle$	$f_{5}[]=\langle b, b, b\rangle$	
$f_{3}[\langle X, Y, Z\rangle]=\langle b X, b Y, b Z\rangle$		

Derivation in underlying generalized CFG:
$S \Rightarrow f_{1}(A) \Rightarrow f_{1}\left(f_{3}(A)\right) \Rightarrow f_{1}\left(f_{3}\left(f_{2}(A)\right)\right) \Rightarrow f_{1}\left(f_{3}\left(f_{2}\left(f_{4}()\right)\right)\right)$
The term $f_{1}\left(f_{3}\left(f_{2}\left(f_{4}()\right)\right)\right)$ denotes \langle baabaa \rangle.
Grammar Formalisms 3 LCFRL: Language Properties

Pumping Lemma: Intuition (2)

- In such a derivation, the expansion of a non-terminal A does not depend on the context A occurs in.
- Consequently, as in the case of CFG, if we have a derivation

$$
A \stackrel{+}{\Rightarrow} f_{1}\left(\ldots f_{2}\left(\ldots f_{k}(\ldots A \ldots) \ldots\right) \ldots\right)
$$

then this part of the derivation can be iterated, i.e., we can also have
$A \stackrel{+}{\Rightarrow} f_{1}\left(\ldots f_{2}\left(\ldots f_{k}\left(\ldots f_{1}\left(\ldots f_{2}\left(\ldots f_{k}(\ldots A \ldots) \ldots\right) \ldots\right) \ldots\right) \ldots\right) \ldots\right)$ etc.

Pumping Lemma (1)

Question: What does this mean for the string language?
Assume that we have such an iteration, i.e., in the derivation tree, we have

with no other derivation $B \stackrel{+}{\Rightarrow} B$ in the subtree corresponding to $A \stackrel{+}{\Rightarrow} A$. The part between the two A nodes can be iterated.

Pumping Lemma (2)

- Let m be the fan-out (the arity) of A. Then the higher A spans an m-tuple of strings and the lower A spans a (smaller) m-tuple of strings that is part of the m-tuple of the higher A Assume that $\left\langle w_{1}, \ldots, w_{m}\right\rangle$ is the span of the lower A.
- There are different cases for how the components of the lower A are part of the span of the higher A. Either w_{i} is part of the i th component $(1 \leq i \leq m)$ or there are components of the higher A that do not contain parts of the span of the lower A.

Pumping Lemma (3)
Case 1: w_{i} is part of the i th component of the higher A $(1 \leq i \leq m)$. Then the span of the higher A has the form $\left\langle v_{1} w_{1} u_{1}, \ldots, v_{m} w_{m} u_{m}\right\rangle$.
Consequently (iteration), $\left\langle v_{1}^{k} w_{1} u_{1}^{k}, \ldots, v_{m}^{k} w_{m} u_{m}^{k}\right\rangle$ is also in the yield of A.

Example:
$S(X Y) \rightarrow A(X, Y), A(a X b, c Y d) \rightarrow A(X, Y), A(a b, c d) \rightarrow \varepsilon$

Iteration:
$a^{n} a b b^{n} c^{n} c d d^{n}$

The iterated parts are present in the original string (in the tree with just two A s on the path).

Pumping Lemma (4)

Case 2: The w_{1}, \ldots, w_{m} are part of only j components $(j<m)$ of the span of the higher A. Then, when iterating, the components of the higher A go again into only j components, i.e., the $m-j$ components that do not contain any of the w_{1}, \ldots, w_{m} must be added to the other ones.

Consequently, in a component of the higher A, we either have the form $v_{1} w_{i} v_{2} w_{i+1} \ldots v_{k-1} w_{i+k} v_{k}$ or a form u (without components from the lower A).

In the next iteration, the u will be added to one of the other components. This can be repeated and will lead to iterations of strings that are concatenations of some of the u and some of the v_{i}. These iterated strings are not necessarily present in the span of the higher A, before iteration.
Grammar Formalisms 8 LCFRL: Language Properties

Pumping Lemma (5)

Example:
$S(X Y Z U) \rightarrow A(X Y Z, U), A(X b Y, c) \rightarrow A(X, Y), A(d, d) \rightarrow \varepsilon$

Iteration pattern: $d b d(b c)^{n} c$
Here, the iterated parts are not present in the original string (in the tree with just two $A \mathrm{~s}$ on the path).

Grammar Formalisms	9	LCFRL: Language Properties

Kallmeyer

Sommersemester 2011

Pumping Lemma (6)

Along these lines, [Seki et al., 1991] show the following pumping lemma for k-MCFLs, the class of languages generated by k-MCFGs:
Proposition 1 (Pumping Lemma for k-MCFLs) For any
k-MCFL L, if L is an infinite set then there exist some $u_{j} \in T$
$(1 \leq j \leq k+1), v_{j}, w_{j}, s_{j} \in T^{*}(1 \leq j \leq k)$ which satisfy the
following conditions:

1. $\Sigma_{j=1}^{k}\left|v_{j} s_{j}\right|>0$, and
2. for any $i \geq 0$,

$$
z_{i}=u_{1} v_{1}^{i} w_{1} s_{1}^{i} u_{2} v_{2}^{i} w_{2} s_{2}^{i} \ldots u_{k} v_{k}^{i} w_{k} s_{k}^{i} u_{k+1} \in L
$$

Pumping Lemma (7)

- Note that the pumping lemma is only existential in the sense that it does not say that within each string that is long enough we find pumpable substrings.
- It only says that there exist strings in the language that are of a limited length and that contain pumpable substrings.
- In contrast to this, the CFG pumping lemma is universal: within every string of sufficient length we find two pumpable substrings of a limited distance.

Pumping Lemma: Applications (1)

Proposition 2 For every $k \geq 1$, the language
$\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 k+1}^{n} \mid n \geq 0\right\}$ is not a k-MCFL.

Proof: Assume that it is a k-MCFL. Then it satisfies the pumping lemma with $2 k$ pumpable strings. At least one of these strings is not empty and none of them can contain different terminals.
However, if at most $2 k$ strings are pumped, we necessarily obtain strings that are not in the language. Contradiction.

Pumping Lemma: Applications (2)

For every $k \geq 1$, the language $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 k+1}^{n} \mid n \geq 0\right\}$ is a
$(k+1)$-MCFL.
It is generated by an MCFG/LCFRS with the following rules:
$S\left(X_{1} X_{2} \ldots X_{k} X_{k+1}\right) \rightarrow A\left(X_{1}, X_{2}, \ldots, X_{k}, X_{k+1}\right)$
$A\left(a_{1} X_{1} a_{2}, a_{3} X_{2} a_{4}, \ldots, a_{2 k-1} X_{k} a_{2 k}, a_{2 k+1} X_{k+1}\right) \rightarrow A\left(X_{1}, X_{2}, \ldots, X_{k}, X_{k+1}\right)$
$A(\varepsilon, \ldots, \varepsilon) \rightarrow \varepsilon$

Proposition $3 k-M C F L$ is a proper subset of $(k+1)$-MCFL.
Grammar Formalisms $13 \quad$ LCFRL: Language Properties

Closure Properties

[Seki et al., 1991] show the following closure properties for
k-MCFL:
Proposition 4 For every $k \geq 1$, the class k-MCFL

- is closed under substitution;
- is closed under union, concatenation, Kleene closure, ε-free Kleene closure;
- is closed under intersection with regular languages.

Closure Properties: Substitution

k-MCFL being closed under substitution means:
If L is a k-MCFL over the terminal alphabet T and f assigns a k-MCFL to every $t \in T$, then

$$
\begin{array}{r}
f(L)=\left\{w_{1} \ldots w_{n} \mid \text { there is a } t_{1} \ldots t_{n} \in L\right. \text { with } \\
\left.\qquad w_{i} \in f\left(t_{i}\right) \text { for } 1 \leq i \leq n\right\}
\end{array}
$$

is also a k-MCFL.

Idea of the construction of the new k-MCFG from the original one and the ones for the images of the terminals: take the original and replace every terminal a in a lhs with a new variable X_{a} and add $S_{a}\left(X_{a}\right)$ to the rhs where S_{a} the start symbol of the grammar of the image of a.
Grammar Formalisms 15 LCFRL: Language Properties

Closure Properties: Union and Concatenation

Let L_{1}, L_{2} be languages generated by the k-MCFGs G_{1}, G_{2} with start symbols S_{1}, S_{2} respectively (and without loss of generality disjoint sets of non-terminals).

- The union, $L_{1} \cup L_{2}$ is generated by the grammar with the rules from G_{1} and G_{2} and additional rules $S(X) \rightarrow S_{1}(X)$,
$S(X) \rightarrow S_{2}(X)$ where S is a new start symbol.
- The concatenation $\left\{w_{1} w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\}$ is generated by the grammar with the rules from G_{1} and G_{2} and an additional rule $S(X Y) \rightarrow S_{1}(X) S_{2}(Y)$ where S is a new start symbol.

Closure Properties: Kleene star

Let L be a language generated by the k-MCFGs G.

- If we add the rules $S^{\prime}(X Y) \rightarrow S(X) S^{\prime}(Y)$ and $S^{\prime}(\varepsilon) \rightarrow \varepsilon$ where S^{\prime} is a new start symbol, we generate the Kleene closure L^{*} of L.
- If we add the rules $S^{\prime}(X Y) \rightarrow S(X) S^{\prime}(Y)$ and $S^{\prime}(X) \rightarrow S(X)$ where S^{\prime} is a new start symbol, we generate the ε-free Kleene closure L^{+}of L.

Closure Properties: Intersection with regular lang. (1)

Construction idea: enrich the non-terminals A with lists of states $q_{1}, q_{1}^{\prime}, \ldots, q_{\operatorname{dim}(A)}, q_{\operatorname{dim}(A)}^{\prime}$ where the path from q_{i} to q_{i}^{\prime} is the path traversed while processing the i th component of A.

Example:
Take the copy language, generated by an MCFG with

$$
\begin{aligned}
& S(X Y) \rightarrow A(X, Y) \\
& A(a X, a Y) \rightarrow A(X, Y) \quad A(b X, b Y) \rightarrow A(X, Y) \quad A(\varepsilon, \varepsilon) \rightarrow \varepsilon
\end{aligned}
$$

Intersect with $a^{*} b^{*} a^{*} b^{*}$, generated by a DFA with
$Q=F=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$, initial state q_{0} and
$\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{1}, \delta\left(q_{1}, b\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{2}$,
$\delta\left(q_{2}, a\right)=q_{2}, \delta\left(q_{2}, b\right)=q_{3}, \delta\left(q_{3}, b\right)=q_{3}$.

Closure Properties: Intersection with regular lang. (2)

Result:

$a^{*} S\left[q_{0}, q_{0}\right](X Y) \rightarrow A\left[q_{0}, q_{0}, q_{0}, q_{0}\right](X, Y)$,
$A\left[q_{0}, q_{0}, q_{0}, q_{0}\right](a X, a Y) \rightarrow A\left[q_{0}, q_{0}, q_{0}, q_{0}\right](X, Y)$,
$A\left[q_{0}, q_{0}, q_{0}, q_{0}\right](\varepsilon, \varepsilon) \rightarrow \varepsilon$
$b^{+} S\left[q_{0}, q_{1}\right](X Y) \rightarrow A\left[q_{0}, q_{1}, q_{1}, q_{1}\right](X, Y)$,
$A\left[q_{0}, q_{1}, q_{1}, q_{1}\right](b X, b Y) \rightarrow A\left[q_{1}, q_{1}, q_{1}, q_{1}\right](X, Y)$,
$A\left[q_{1}, q_{1}, q_{1}, q_{1}\right](b X, b Y) \rightarrow A\left[q_{1}, q_{1}, q_{1}, q_{1}\right](X, Y)$,
$A\left[q_{1}, q_{1}, q_{1}, q_{1}\right](\varepsilon, \varepsilon) \rightarrow \varepsilon$
$a^{+} b^{+} a^{+} b^{+} S\left[q_{0}, q_{3}\right](X Y) \rightarrow A\left[q_{0}, q_{1}, q_{1}, q_{3}\right](X, Y)$,
$A\left[q_{0}, q_{1}, q_{1}, q_{3}\right](a X, a Y) \rightarrow A\left[q_{0}, q_{1}, q_{2}, q_{3}\right](X, Y)$,
$A\left[q_{0}, q_{1}, q_{2}, q_{3}\right](a X, a Y) \rightarrow A\left[q_{0}, q_{1}, q_{2}, q_{3}\right](X, Y)$,
$A\left[q_{0}, q_{1}, q_{2}, q_{3}\right](b X, b Y) \rightarrow A\left[q_{1}, q_{1}, q_{3}, q_{3}\right](X, Y)$,
$A\left[q_{1}, q_{1}, q_{3}, q_{3}\right](b X, b Y) \rightarrow A\left[q_{1}, q_{1}, q_{3}, q_{3}\right](X, Y)$,
$A\left[q_{1}, q_{1}, q_{3}, q_{3}\right](\varepsilon, \varepsilon) \rightarrow \varepsilon$

Grammar Formalisms
19
LCFRL: Language Properties

Closure Properties: Intersection with regular lang. (3)

Proposition 5 [Kallmeyer, 2010]
$L=\left\{\left(a^{m} b^{m}\right)^{n} \mid m, n \geq 1\right\}$ is not an MCFL.
Proof: We assume that there is a fixed k such that there is a k-MCFG generating L.
We intersect L with the regular language $\left(a^{+} b^{+}\right)^{k+1}$, which yields $L^{\prime}=\left\{\left(a^{m} b^{m}\right)^{k+1} \mid m \geq 1\right\}$. L^{\prime} does not satisfy the pumping lemma for k-MCFL since the iterated parts in the pumping lemma must each consist of either a s or b (otherwise we would increase the number of substrings a^{m} and b^{m} when iterating). Furthermore, if we have at most $2 k$ iterated parts, the iterations necessarily lead to words where the a^{m} and b^{m} parts no longer have all the same exponent. Consequently, L^{\prime} and therefore also L are not k-MCFLs. Since this holds for any k, L is not an MCFL.

20 LCFRL: Language Properties

References

[Kallmeyer, 2010] Kallmeyer, L. (2010). Parsing Beyond
Context-Free Grammars. Cognitive Technologies. Springer,
Heidelberg.
[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami,
T. (1991). On multiple context-free grammars. Theoretical

Computer Science, 88(2):191-229.

