
Mildly Context-Sensitive Grammar

Formalisms:

Introduction

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

Grammar Formalisms 1 Introduction

Kallmeyer Sommersemester 2011

Overview

1. CFG and natural languages

2. Polynomial extensions of CFG

3. Basic definitions

Grammar Formalisms 2 Introduction

CFG and natural languages (1)

A context-free grammar (CFG) is a set of rewriting rules that tell

us how to replace a non-terminal by a sequence of non-terminal and

terminal symbols.

Example:

S → a S b S → ab

The string language generated by this grammar is {anbn |n ≥ 1}.

Grammar Formalisms 3 Introduction

Kallmeyer Sommersemester 2011

CFG and natural languages (2)

Sample CFG Gtelescope:

S → NP VP NP → D N

VP → VP PP | V NP N → N PP

PP → P NP

N → man | girl | telescope D → the

N → John P → with

V → saw

Grammar Formalisms 4 Introduction

CFG and natural languages (3)

Context-free languages (CFLs)

• can be recognized in polynomial time (O(n3));

• are accepted by push-down automata;

• have nice closure properties (e.g., closure under

homomorphisms, intersection with regular languages . . .);

• satisfy a pumping lemma;

• can describe nested dependencies ({wwR |w ∈ T ∗}).

(Hopcroft and Ullman, 1979)

Grammar Formalisms 5 Introduction

Kallmeyer Sommersemester 2011

CFG and natural languages (4)

Question: Is CFG powerful enough to describe all natural language

phenomea?

Answer: No. There are constructions in natural languages that

cannot be adequately described with a context-free grammar.

Example: cross-serial dependencies in Dutch and in Swiss German.

Dutch:

(1)

... dat Wim Jan Marie de kinderen zag helpen leren zwemmen

... that Wim Jan Marie the children saw help teach swim

‘... that Wim saw Jan help Marie teach the children to swim’

Grammar Formalisms 6 Introduction

CFG and natural languages (5)

Swiss German:

(2)

... das mer em Hans es huus hälfed aastriiche

... that we HansDat houseAcc helped paint

‘... that we helped Hans paint the house’

(3)

... das mer d’chind em Hans es huus lönd hälfe aastriiche

... that we the childrenAcc HansDat houseAcc let help paint

‘... that we let the children help Hans paint the house’

Swiss German uses case marking and displays cross-serial

dependencies.

(Shieber, 1985) shows that Swiss German is not context-free.

Grammar Formalisms 7 Introduction

Kallmeyer Sommersemester 2011

CFG and natural languages (6)

In general, because of the closure properties, the following holds:

A formalism that can generate cross-serial dependencies can also

generate the copy language {ww |w ∈ {a, b}∗}.

The copy language is not context-free.

Therefore we are interested in extensions of CFG in order to

describe all natural language phenomena.

Grammar Formalisms 8 Introduction

CFG and natural languages (7)

Idea (Joshi, 1985): characterize the amount of context-sensitivity

necessary for natural languages.

Mildly context-sensitive formalisms have the following properties:

1. They generate (at least) all CFLs.

2. They can describe a limited amount of cross-serial

dependencies.

In other words, there is a n ≥ 2 up to which the formalism can

generate all string languages {wn |w ∈ T ∗}.

3. They are polynomially parsable.

4. Their string languages are of constant growth.

In other words, the length of the words generated by the

grammar grows in a linear way, e.g., {a2
n

|n ≥ 0} does not

have that property.

Grammar Formalisms 9 Introduction

Kallmeyer Sommersemester 2011

Polynomial extensions of CFG (1)

Tree Adjoining Grammars (TAG), (Joshi, Levy, and Takahashi,

1975; Joshi and Schabes, 1997):

• Tree-rewriting grammar.

• Extension of CFG that allows to replace not only leaves but

also internal nodes with new trees.

• Can generate the copy language.

Example: TAG for the copy language

S

ǫ

SNA

a S

S∗

NA a

SNA

b S

S∗

NA b

Grammar Formalisms 10 Introduction

Polynomial extensions of CFG (2)

Example: TAG derivation of abab:

S

ǫ

SNA

a S

S∗NA a

;

SNA

a S

S∗NA a

ǫ

SNA

a S

S∗NA a

ǫ

SNA

b S

S∗NA b

;

SNA

a SNA

b S

S∗NA b

S∗NA a

ǫ

Grammar Formalisms 11 Introduction

Kallmeyer Sommersemester 2011

Polynomial extensions of CFG (3)

Linear Context-free rewriting systems (LCFRS) and the equivalent

Multiple Context-Free Grammars (MCFG), (Vijay-Shanker, Weir,

and Joshi, 1987; Weir, 1988; Seki et al., 1991)

Idea: extension of CFG where non-terminals can span tuples of

non-adjacent strings.

Example: yield(A) = 〈anbn, cndn〉, with n ≥ 1.

The rewriting rules tell us how to compute the span of the lefthand

side non-terminal from the spans of the righthand side

non-terminals.

A(ab, cd) → ε A(aXb, cY d) → A(X, Y) S(XY) → A(X, Y)

Generated string language: {anbncndn |n ≥ 1}.

LCFRS is more powerful than TAG but still mildly

context-sensitive.

Grammar Formalisms 12 Introduction

Polynomial extensions of CFG (4)

Range Concatenation Grammar (RCG) (Boullier, 2000)

• RCG contains clauses of the form A(. . .) → A1(. . .) . . .Ak(. . .)

where A, A1, . . . , Ak are predicates. Their arguments are words

over the terminal and nonterminal alphabets.

• Intuition: The predicates characterize properties of strings. A

derivation starts with S(w) where S is a start predicate. If this

can be reduced to the empty word (i.e., property S is true for

w), then w is in the language.

Example: RCG for {a2
n

|n ≥ 0}.

S(a) → ε S(XY) → E(X, Y)S(X)

E(a, a) → ε E(aX, aY) → E(X, Y)

Grammar Formalisms 13 Introduction

Kallmeyer Sommersemester 2011

Polynomial extensions of CFG (5)

RCGs are simple if

• the arguments in the right-hand sides of the clauses are single

variables.

• no variable appears more than once in the left-hand side of a

clause or more than once in the right-hand side of a clause.

• each variable occurring in the left-hand side of a clause occurs

also in its right-hand side and vice versa.

Simple RCG are equivalent to LCFRS and MCFG.

RCG in general are more powerful; they generate exactly the class

PTIME of polynomially parsable languages. (They properly

include the class of MCS formalisms.)

Grammar Formalisms 14 Introduction

Polynomial extensions of CFG (6)

Summary:'

&

$

%

'

&

$

%

'

&

$

%

�
 �	CFG

TAG

LCFRS, MCFG, simple RCG

RCG (= PTIME)

mildly

context-sensitive

In this course, we are interested in mildly context-sensitive

formalisms.

Grammar Formalisms 15 Introduction

Kallmeyer Sommersemester 2011

Basic Definitions: Languages (1)

Definition 1 (Alphabet, word, language)

1. An alphabet is a nonempty finite set X.

2. A string x1 . . . xn with n ≥ 1 and xi ∈ X for 1 ≤ i ≤ n is called

a nonempty word on the alphabet X. X+ is defined as the set

of all nonempty words on X.

3. A new element ε /∈ X+ is added: X∗ := x+ ∪ {ε}.

For each w ∈ X∗, the concatenation of w and ε is defined as

follows: wε = εw = w.

ε is called the empty word, and each w ∈ X∗ is called a word

on X.

4. A set L is called a language iff there is an alphabet X such that

L ⊆ X∗.

Grammar Formalisms 16 Introduction

Basic Definitions: Languages (2)

Definition 2 (Homomorphism)

For two alphabets X and Y , a function f : X∗ → Y ∗ is a

homomorphism iff for all v, w ∈ X∗: f(vw) = f(v)f(w).

Definition 3 (Length of a word) Let X be an alphabet, w ∈ X∗.

1. The length of w, |w| is defined as follows: if w = ε, then

|w| = 0. If w = xw′ for some x ∈ X, then |w| = 1 + |w′|.

2. For every a ∈ X, we define |w|a as the number of as occurring

in w: If w = ε, then |w|a = 0, if w = aw′ then |w|a = |w′|a + 1

and if w = bw′ for some b ∈ X \ {a}, then |w|a = |w′|a.

Grammar Formalisms 17 Introduction

Kallmeyer Sommersemester 2011

Basic Definitions: CFG (1)

Definition 4 (Context-free grammar)

A context-free grammar (CFG) is a tuple G = 〈N, T, P, S〉 such that

1. N and T are disjoint alphabets, the nonterminals and terminals

of G,

2. P ⊂ N × (N ∪ T)∗ is a finite set of productions (also called

rewriting rules). A production 〈A, α〉 is usually written A → α.

3. S ∈ N is the start symbol.

Grammar Formalisms 18 Introduction

Basic Definitions: CFG (2)

Definition 5 (Language of a CFG)

Let G = 〈N, T, P, S〉 be a CFG. The (string) language L(G) of G is

the set {w ∈ T ∗ |S
∗

⇒ w} where

• for w, w′ ∈ (N ∪ T)∗: w ⇒ w′ iff there is a A → α ∈ P and

there are v, u ∈ (N ∪ T)∗ such that w = vAu and w′ = vαu.

•
∗

⇒ is the reflexive transitive closure of ⇒:

– w
0
⇒ w for all w ∈ (N ∪ T)∗, and

– for all w, w′ ∈ (N ∪ T)∗: w
n
⇒ w′ iff there is a v such that

w ⇒ v and v
n−1
⇒ w′.

– for all w, w′ ∈ (N ∪ T)∗: w
∗

⇒ w′ iff there is a i ∈ IN such

that w
i
⇒ w′.

A language L is called context-free iff there is a CFG G such that

L = L(G).

Grammar Formalisms 19 Introduction

Kallmeyer Sommersemester 2011

Basic Definitions: CFG (3)

Proposition 1 (Pumping lemma for context-free languages)

Let L be a context-free language. Then there is a constant c such

that for all w ∈ L with |w| ≥ c: w = xv1yv2z with

• |v1v2| ≥ 1,

• |v1yv2| ≤ c, and

• for all i ≥ 0: xvi
1yvi

2z ∈ L.

Grammar Formalisms 20 Introduction

Basic Definitions: CFG (4)

Proposition 2 Context-free languages are closed under

homomorphisms, i.e., for alphabets T1, T2 and for every context-free

language L1 ⊂ T ∗

1 and every homomorphism h : T ∗

1 → T ∗

2 ,

h(L1) = {h(w) |w ∈ L1} is a context-free language.

Proposition 3 Context-free languages are closed under

intersection with regular languages, i.e., for every context-free

language L and every regular language Lr, L ∩ Lr is a context-free

language.

Proposition 4 The copy language {ww |w ∈ {a, b}∗} is not

context-free.

Grammar Formalisms 21 Introduction

Kallmeyer Sommersemester 2011

Basic Definitions: Trees (1)

Definition 6 (Directed Graph)

1. A directed graph is a pair 〈V, E〉 where V is a finite set of

vertices and E ⊆ V × V is a set of edges.

2. For every v ∈ V , we define the in-degree of v as

|{v′ ∈ V | 〈v′, v〉 ∈ E}| and the out-degree of v as

|{v′ ∈ V | 〈v, v′〉 ∈ E}|.

E+ is the transitive closure of E and E∗ is the reflexive transitive

closure of E.

Grammar Formalisms 22 Introduction

Basic Definitions: Trees (2)

Definition 7 (Tree)

A tree is a triple γ = 〈V, E, r〉 such that

• 〈V, E〉 is a directed graph and r ∈ V is a special node, the root

node.

• γ contains no cycles, i.e., there is no v ∈ V such that

〈v, v〉 ∈ E+,

• only the root r ∈ V has in-degree 0,

• every vertex v ∈ V is accessible from r, i.e., 〈r, v〉 ∈ E∗, and

• all nodes v ∈ V − {r} have in-degree 1.

A vertex with out-degree 0 is called a leaf. The vertices in a tree are

also called nodes.

Grammar Formalisms 23 Introduction

Kallmeyer Sommersemester 2011

Basic Definitions: Trees (3)

Definition 8 (Ordered Tree) A tree is ordered if it has an

additional linear precedence relation ≺∈ V × V such that

• ≺ is irreflexive, antisymmetric and transitive,

• for all v1, v2 with {〈v1, v2〉, 〈v2, v1〉} ∩ E∗ = ∅: either v1 ≺ v2 or

v2 ≺ v1 and if there is either a 〈v3, v1〉 ∈ E with v3 ≺ v2 or a

〈v4, v2〉 ∈ E with v1 ≺ v4, then v1 ≺ v2, and

• nothing else is in ≺.

We use Gorn addresses for nodes in ordered trees: The root address

is ε, and the jth child of a node with address p has address pj.

Grammar Formalisms 24 Introduction

Basic Definitions: Trees (4)

Definition 9 (Labeling) A labeling of a graph γ = 〈V, E〉 over a

signature 〈A1, A2〉 is a pair of functions l : V → A1 and g : E → A2

with A1, A2 possibly distinct.

Definition 10 (Syntactic tree) Let N and T be disjoint

alphabets of non-terminal and terminal symbols. A syntactic tree

(over N and T) is an ordered finite labeled tree such that l(v) ∈ N

for each vertex v with out-degree at least 1 and l(v) ∈ (N ∪ T ∪ {ε})

for each leaf v.

Grammar Formalisms 25 Introduction

Kallmeyer Sommersemester 2011

Basic Definitions: Trees (5)

Definition 11 (Tree Language of a CFG) Let G = 〈N, T, P, S〉

be a CFG.

1. A syntactic tree 〈V, E, r〉 over N and T is a parse tree in G iff

• l(v) ∈ (T ∪ {ε}) for each leaf v,

• for every v0, v1, . . . , vn ∈ V , n ≥ 1 such that 〈v0, vi〉 ∈ E for

1 ≤ i ≤ n and 〈vi, vi+1〉 ∈≺ for 1 ≤ i < n,

l(v0) → l(v1) . . . l(vn) ∈ P .

2. A parse tree 〈V, E, r〉 is a derivation tree in G iff l(r) = S.

3. The tree language of G is

LT (G) = {γ | γ is a derivation tree in G}

Grammar Formalisms 26 Introduction

Basic Definitions: Trees (6)

Definition 12 (Weak and Strong Equivalence)

Let F1, F2 be two grammar formalisms.

• F1 and F2 are weakly equivalent iff for each instance G1 of F1

there is an instance G2 of F2 that generates the same string

language and vice versa.

• F1 and F2 are strongly equivalent iff for both formalisms the

notion of a tree language is defined and, furthermore, for each

instance G1 of F1 there is an instance G2 of F2 that generates

the same tree language and vice versa.

Grammar Formalisms 27 Introduction

Kallmeyer Sommersemester 2011

References

Boullier, Pierre. 2000. Range Concatenation Grammars. In Proceedings

of the Sixth International Workshop on Parsing Technologies

(IWPT2000), pages 53–64, Trento, Italy, February.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to

Automata Theory, Languages and Computation. Addison Wesley.

Joshi, Aravind K. 1985. Tree adjoining grammars: How much

contextsensitivity is required to provide reasonable structural

descriptions? In D. Dowty, L. Karttunen, and A. Zwicky, editors,

Natural Language Parsing. Cambridge University Press, pages 206–250.

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975. Tree

Adjunct Grammars. Journal of Computer and System Science,

10:136–163.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-Adjoning Grammars.

In G. Rozenberg and A. Salomaa, editors, Handbook of Formal

Languages. Springer, Berlin, pages 69–123.

Grammar Formalisms 28 Introduction

Savitch, Walter J., Emmon Bach, William Marxh, and Gila

Safran-Naveh, editors. 1987. The Formal Complexity of Natural

Language. Studies in Linguistics and Philosophy. Reidel, Dordrecht,

Holland.

Seki, Hiroyuki, Takahashi Matsumura, Mamoru Fujii, and Tadao

Kasami. 1991. On multiple context-free grammars. Theoretical

Computer Science, 88(2):191–229.

Shieber, Stuart M. 1985. Evidence against the context-freeness of

natural language. Linguistics and Philosophy, 8:333–343. Reprinted in

(Savitch et al., 1987).

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi. 1987.

Characterizing structural descriptions produced by various grammatical

formalisms. In Proceedings of ACL, Stanford.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar

Formalisms. Ph.D. thesis, University of Pennsylvania.

Grammar Formalisms 29 Introduction

