
Einführung in die Computerlinguistik
Context-Free Grammars – formal properties

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2018

1 / 20

Normal forms (1)

Hopcro� and Ullman (1979)
A normal form of a grammar formalism F is a further restriction on
the grammars in F that does not a�ect the set of generated string
languages.

Let G = 〈N , T , P, S〉 be a CFG. A X ∈ N ∪ T is called

useful if there is a derivation S ∗⇒ αXβ ∗⇒ w with w ∈ T∗.
useless otherwise.

For each CFG, there exists an equivalent CFG (= a CFG generating the
same string language) without useless symbols.

2 / 20

Normal forms (2)
To eliminate all useless symbols two things need to be done:

1 All X ∈ N need to be eliminated that cannot lead to a terminal
sequence.
�is can be done recursively: Starting from the terminals and
following the productions from right to le�, the set of all sym-
bols leading to terminals can be computed recursively.
Productions containing symbols that are not in this set are
eliminated.

2 In the resulting CFG, the unreachable symbols need to be elimi-
nated.
�is is done starting from S and applying productions. Each
time, the symbols from the right-hand sides are added.
Again, productions containing non-terminals or terminals that
are not in the set are eliminated.

3 / 20

Normal Forms (3)

A production of the form A→ ε is called a ε-production.

�e following holds:
For each CFG G, there is a CFG G′ without ε-productions such that
L(G′) = L(G) \ {ε}.

4 / 20

Normal Forms (4)

In order to eliminate ε-productions, we

compute the set Nε = {A |A
∗⇒ ε} recursively:

1 Nε := {A ∈ N |A⇒ ε}.
2 For all A with A→ α, α ∈ N∗

ε : add A to Nε.
3 Repeat 2. until Nε does not change any more.

delete the ε-productions and for each A → X1 . . .Xn: add all
productions one can obtain by deleting some X ∈ Nε from the
right-hand side as long as one does not delete all X1, . . . ,Xn.

5 / 20

Normal Forms (5)

A production of the form A→ B is called a unary production.

For each CFL that does not contain ε, a CFG without unary
productions can be found.

Elimination of unary productions for a CFG without ε-productions:

For all A ∗⇒ B and all B→ β, β /∈ N : add A→ β.
Delete all unary productions.

6 / 20

Normal Forms (6)

�ere are two important normal forms for CFGs: A CFG for a
language without ε is

in Chomsky normal form i� all productions have either the
form A→ BC or A→ a with A,B,C ∈ N , a ∈ T .

in Greibach normal form i� all productions have the form A→
aα with a ∈ T , α ∈ N ∗.

7 / 20

Normal Forms (7)

For each CFL L without ε, there is a CFG G in Chomsky normal form
with L = L(G).

Construction of an equivalent CFG in CNF for a given CFG (a�er
elimination of useless symbols, ε-productions and unary productions):

1. For each terminal a: introduce new non-terminal Ca, replace a
with Ca in all right-hand sides of length > 1 and add produc-
tion Ca → a.

8 / 20

Normal Forms (8)

2. For each production A→ B0 . . . Bn introduce new non-terminals
D1, . . . ,Dn−1 and replace production with productions
A→ B0D1, D1 → B1D2, D2 → B2D3, . . . , Dn−1 → Bn−1Bn.

A

BnB0
. . .

A

D1

D2B1

B0

. . .

Dn−1

BnBn−1

9 / 20

Normal Forms (9)

For each CFL L without ε, there is a CFG G in Greibach normal form
with L = L(G).

For the construction see Hopcro� and Ullman (1994).

10 / 20

Closure Properties (1)

CFLs are closed

under union (construction: add S′ → S1|S2 where S1, S2 the start
symbols of the two CFGs; condition: non-terminals in the two
CFGs pairwise disjoint)
under concatenation and Kleene closure (construction as with
regular languages)
under homomorphisms (construction: replace terminals in
productions with their images under the homomorphism)1

under substitution (construction: replace terminals in �rst CFG
with start symbols of corresponding CFGs, make sure non-
terminals of the involved CFGs are pairwise disjoint)

1A homomorphism in this context is a function f : Σ∗
1 → Σ∗

2 such that
f (w1w2) = f (w1)f (w2).

11 / 20

Closure Properties (2)

CFLs are closed under intersection with regular languages

(construction: take the CFG and the DFA of the regular language; then
build a new CFG by replacing non-terminals A with triples 〈q1,A, q2〉
where the triple stands for derivation of the yield of A while
traversing a DFA path from q1 to q2)

12 / 20

Closure Properties (3)

Example for intersection with regular languages:
CFG: S → aSb | ε, regular language a+b+.
DFA:

q0 q1 q2
a

a

b
b

Intersection grammar, start symbol S′:
S′ → 〈q0, S, q2〉 (q2 is the only �nal state)
〈q0, S, q2〉 → a〈q1, S, q1〉b (with δ(q0, a) = q1, δ(q1, b) = q2)
〈q0, S, q2〉 → a〈q1, S, q2〉b (with δ(q0, a) = q1, δ(q2, b) = q2)
〈q1, S, q2〉 → a〈q1, S, q2〉b (with δ(q1, a) = q1, δ(q2, b) = q2)
〈q1, S, q2〉 → a〈q1, S, q1〉b (with δ(q1, a) = q1, δ(q1, b) = q2)
〈q1, S, q1〉 → ε (since q1 = q1)

13 / 20

Pumping Lemma (1)

In a context-free derivation, the expansion of a non-terminal A
does not depend on the context A occurs in.

Consequently, if we have a derivation

S +⇒ xAz +⇒ xv1Av2z
+⇒ xv1yv2z

then the part A +⇒ v1Av2 of the derivation can be iterated, i.e.,
we can also have

S +⇒ xvi1yv
i
2z

for any i ≥ 1.

14 / 20

Pumping Lemma (2)

Looking at the derivation trees, this is even clearer:
Assume that in a derivation tree, if the derivation tree has a certain
minimal height (maximal length of paths from root to leaves), we
have a path from the root (symbol S) to a leaf such that

on this path, a non-terminal A occurs twice, and
below the higher of these As, there is only a single A and no
other non-terminal is repeated on any path.

Since the number of non-terminals is �nite, from a certain string
length on, every derivation treee of a word in the language is
necessarily of this form.

15 / 20

Pumping Lemma (3)
�e part of the derivation tree in between the two nodes with the
same non-terminal can be iterated. �is means that the strings
yielded by this part are pumped.

A

A

S

x v1 y v2 z

16 / 20

Pumping Lemma (4)

Pumping lemma for context-free languages: Let L be a context-free
language. �en there is a constant k such that for all w ∈ L with
|w| ≥ k: w = xv1yv2z with

|v1v2| ≥ 1,
|v1yv2| ≤ k, and
for all i ≥ 0: xvi1yvi2z ∈ L.

17 / 20

Pumping Lemma (5)

With the pumping lemma and the closure properties, we can show for
a lot of languages that they are not context-free:

L1 = {anbncn | n ≥ 1} is not context-free.
Proof: Assume that L1 is context-free. �en it must satisfy the
pumping lemma with some constant k. Consequently, for every
w ∈ L1 and then in particular for akbkck , we must �nd substrings
v1, v2 that can be iterated. Either they contain each only occurrences
of a single terminal. �en the iteration will yield words that have no
longer the same numbers of as, bs and cs. Or at least one contains at
least two di�erent terminals. �en the iterations necessarily lead to
words where the as, bs and cs get mixed.
⇒ L1 does not satisfy the pumping lemma, contrary to the
assumption and therefore L1 cannot be context-free.

18 / 20

Pumping Lemma (6)

L2 = {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c} is not context-free.
Proof: Assume that L2 is context-free. �en its intersection with the
regular language a+b+c+ must also be context-free. However, this
intersection is L1 = {anbncn | n ≥ 1}, for which we have just shown
that it is not context-free.
⇒ Since L1 is not context-free, our assmption is false and L2 is not
context-free either.

19 / 20

Hopcro�, J. E. and Ullman, J. D. (1979). Introduction to Automata �eory,
Languages and Computation. Addison Wesley.

Hopcro�, J. E. and Ullman, J. D. (1994). Einführung in die Automatentheorie,
Formale Sprachen und Komplexitätstheorie. Addison Wesley, 3. edition.

20 / 20

	Normal forms
	Closure properties
	Pumping Lemma

