
Kallmeyer CL-Einführung

Einführung in die Computerlinguistik

Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2013

Parsing 1 Sommersemester 2013

Kallmeyer CL-Einführung

Overview

1. Introduction

2. Top-Down Parsing

3. Shift Reduce Parsing

4. Chart Parsing: CYK

Parsing 2 Sommersemester 2013

Kallmeyer CL-Einführung

Introduction (1)

A parser is a device that accepts a word w and a grammar G as

input and that

1. decides whether w is in the language generated by the

grammar and

2. if so, it provides a syntactic analysis for w or, if w is

ambiguous, a set of analyses, oftentimes represented in a

compact way as a derivation forest.

A device that does only the first part of the task is called a

recognizer.

Parsing 3 Sommersemester 2013

Kallmeyer CL-Einführung

Introduction (2)

Example for parsing:

Input: “the man saw the girl”.

Output:

S

NP VP

D N V NP

the man saw D N

the girl

Input: “the man saw saw the girl”. Output: no.

Parsing 4 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (1)

CFG parser that is

• a top-down parser: we start with S and subsequently replace

lefthand sides of productions with righthand sides.

• a directional parser: the expanding of non-terminals (with

appropriate righthand sides) is ordered; we start with the

leftmost non-terminal and go through the righthand sides of

productions from left to right.

In particular: we determine the start position of the span of

the ith symbol in a rhs only after having processed the i− 1

preceding symbols.

• a LL-parser: we process the input from left to right while

constructing a leftmost derivation.

First proposed by Sheila Greibach (for CFGs in GNF).

Parsing 5 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (2)

Assume a CFG without left recursion A
+
⇒ Aα.

The parser goes through different pairs of remaining input and

sentential form (a stack), starting with w and the start symbol S.

In each step, we

• either scan the next input symbol, provided it corresponds to

the top of the sentential form

• or we non-deterministically predict a production that expands

the top of the sentential form, provided this is a non-terminal.

In this case we replace it with the rhs of a production.

Success, if we end with empty remaining input and empty

sentential form.

Parsing 6 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (3)

Example: S → aSb | c, input aacbb.

1. aacbb S initial

2. aacbb aSb predict from 1.

4. aacbb c predict from 1.

5. acbb Sb scan from 2.

6. acbb aSbb predict from 5.

7. acbb cb predict from 5.

8. cbb Sbb scan from 6.

9. cbb aSbbb predict from 8.

10. cbb cbb predict from 8.

11. bb bb scan from 10.

12. b b scan from 11.

13. ε ε scan from 12.

Parsing 7 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (4)

Function top-down with arguments

• w: remaining input;

• α: remaining sentential form (a stack).

top-down(w,α) iff α
∗

⇒ w (for α ∈ (N ∪ T)∗, w ∈ T ∗)

Initial call:

top-down(w,S)

Parsing 8 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (5)

function top-down(w,α):

out = false;

if w = α = ǫ, then out = true;

else if w = aw′ and α = aα′,

then out = top-down(w′,α′) scan

else if α = Xα′ with X ∈ N,

then for all X → X1 . . .Xk:

if top-down(w, X1 . . .Xkα
′) predict

then out = true;

return out

Parsing 9 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (6)

How to turn the recognizer into a parser:

Add an analysis stack to the parser that allows you to construct

the parse tree.

Assume that for each A ∈ N , the righthand sides of A-productions

are numbered (have indices).

Whenever

• a production is applied (prediction step), the lefthand side is

pushed on the analysis stack together with the index of the

righthand side;

• a terminal a is scanned, a is pushed on the analysis stack.

(This is needed for backtracking in a depth-first strategy.)

Parsing 10 Sommersemester 2013

Kallmeyer CL-Einführung

Top-Down Parsing (7)

function top-down(w,α,Γ):

out = false;

if w = α = ǫ,

then output Γ; out = true;

else if w = aw′ and α = aα′,

then out = top-down(w′,α′, aΓ)

else if α = Xα′ with X ∈ N,

then for all X → X1 . . .Xk with rhs-index i:

if top-down(w, X1 . . .Xkα
′, 〈X, i〉Γ)

then out = true;

return out

Parsing 11 Sommersemester 2013

Kallmeyer CL-Einführung

Shift-Reduce Parsing (1)

CFG parser that is

• a bottom-up parser: we start with the terminals and

subsequently replace righthand sides of productions with

lefthand sides.

• a directional parser: the replacing of righthand sides with

lefthand sides is ordered corresponding to a rightmost

derivation.

• a LR-parser: we process the input from left to right while

constructing a rightmost derivation.

• a Shift-reduce-parser: the two operations of the parser are shift

and reduce.

Parsing 12 Sommersemester 2013

Kallmeyer CL-Einführung

Shift-Reduce Parsing (2)

The parser consists of

• a stack (initially empty) Γ ∈ (N ∪ T)∗

• the remaining input (initially w).

Idea:

• w is shifted on the stack while, whenever the top of the stack is

the rhs of a production in reverse order, this is replaced with

the lhs.

• Success if Γ = S and remaining input ǫ.

Parsing 13 Sommersemester 2013

Kallmeyer CL-Einführung

Shift-Reduce Parsing (3)

For convenience we write the stack with its top on the right.

Example: S → ABC,A → a |Aa,B → b | bB, C → c

w = aabbbc.

aabbbc

a abbbc shift

A abbbc reduce, A → a

Aa bbbc shift

A bbbc reduce, A → Aa

Ab bbc shift

AB bbc reduce, B → b

ABb bc shift

Parsing 14 Sommersemester 2013

Kallmeyer CL-Einführung

Shift-Reduce Parsing (4)

ABb bc

AB bc reduce, B → Bb

ABb c shift

AB c reduce, B → Bb

ABc shift

ABC reduce, C → c

S reduce, S → ABC

If we apply the productions in reverse order we obtain a rightmost

derivation:

S ⇒ ABC ⇒ ABc ⇒ ABbc ⇒ ABbbc ⇒ Abbbc ⇒ Aabbbc ⇒ aabbbc

Parsing 15 Sommersemester 2013

Kallmeyer CL-Einführung

Shift-Reduce Parsing (5)

Assume a grammar without ǫ-productions and without loops.

function bottom-up(w,Γ):

if w = ǫ and Γ = S then true

else reduce(w,Γ) or shift(w,Γ)

function shift(w,Γ):

out = false

if w = aw′ and a ∈ T

then out = bottom-up(w′,Γa)

return out

Parsing 16 Sommersemester 2013

Kallmeyer CL-Einführung

Shift-Reduce Parsing (6)

function reduce(w,Γ):

out = false;

for every A → α ∈ P:

if Γ = Γ′α and bottom-up(w,Γ′A)

then out = true;

return out

Initial call: bottom-up(w, ǫ)

Parsing 17 Sommersemester 2013

Kallmeyer CL-Einführung

CYK (1)

The CYK parser is

• a bottom-up parser: we start with the terminals in the input

string and subsequently compute recognized parse trees by

going from already recognized rhs of productions to the

non-terminal on the lefthand side.

• a non-directional parser: the order of the completing of

subtrees is not necessarily from left to right.

• a chart parser: we store every intermediate result in a chart

and can reuse it in different contexts. This avoids computing

the same subtree several times. Particularly useful for

ambiguous grammars such as natural language grammars.

Independently proposed by Cocke, Kasami and Younger in the 60s.

Parsing 18 Sommersemester 2013

Kallmeyer CL-Einführung

CYK (2)

A CFG is in Chomsky Normal Form iff all productions are either of

the form A → a or A → B C.

If the grammar has this form,

• we need to check only for two categories B, C, in order to

construct an A with A → B C.

• we can be sure that the spans always become longer when

applying productions A → B C. I.e., if l1 and l2 are the

lengthes of B and C, then the length of the resulting A is

l1 + l2 > max(l1, l2).

Every CFG can be transformed into an equivalent CFG in CNF.

Parsing 19 Sommersemester 2013

Kallmeyer CL-Einführung

CYK (3)

The chart C is an n× n-array. The first index is the index of the

first terminal in the span and the second gives the length of a span.

A ∈ Ci,l indicates that we have found an A with a span starting at

index i and having length l.

Algorithm:

Ci,1 = {A |A → wi ∈ P} scan

for all l ∈ [1..n]:

for all i ∈ [1..n]:

for every A → B C:

if there is a l1 ∈ [1..l − 1] such that

B ∈ Ci,l1 and C ∈ Ci+l1,l−l1,

then Ci,l = Ci,l ∪ {A} complete

Parsing 20 Sommersemester 2013

Kallmeyer CL-Einführung

CYK (4)

Example: S → CaCb | CaSB , SB → SCb, Ca → a, Cb → b. (From

S → aSb | ab with transformation into CNF.)

w = aaabbb.

l

6 S

5 SB

4 S

3 SB

2 S

1 Ca Ca Ca Cb Cb Cb

1 2 3 4 5 6 i

a a a b b b

Parsing 21 Sommersemester 2013

