
A Finite-State Approach to Schwa/Zero
Alternations in French

Miriam Käshammer

Wankheimer Täle 1/003

72072 Tübingen

miriam.kaeshammer@gmx.de

Thesis submitted in ful�lment of the requirements of the degree

Bachelor of Arts in Computational Linguistics

at Seminar für Sprachwissenschaft, Eberhard-Karls-Universität Tübingen

Course: Finite State Methods in Natural Language Processing

Supervisor: Dale Gerdemann

September 7, 2009

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbst-

ständig und nur mit den angegebenen Quellen und Hilfsmitteln

(einschlieÿlich des WWW und anderer elektronischer Quellen)

angefertigt habe. Alle Stellen der Arbeit, die ich anderen Werken

dem Wortlaut oder dem Sinne nach entnommen habe, sind

kenntlich gemacht.

(Miriam Käshammer)

Abstract

Tranel (1999, 2000) presents an approach to interconsonantal schwa/zero alternations in French

within the framework of Optimality Theory. The paper at hand extends this approach by providing

general syllable constraints, and formalizes the analysis using the Foma �nite-state calculus. Each

constraint is represented as a �nite-state transducer that inserts violation markers into candidate

strings. For the minimization of violations in order to �nd optimal candidates, the Matching

Approach (Gerdemann and van Noord, 2000) is adopted.

CONTENTS 1

Contents

1 Introduction 2

2 Background 2

2.1 Optimality Theory . 2

2.2 Finite-State Technology . 4

2.3 Finite-State Phonology . 5

2.3.1 The Counting Approach . 6

2.3.2 The Matching Approach . 6

3 Schwa/Zero Alternations in French 9

3.1 Remarks on the language of reference . 9

3.2 Schwa in the French vowel system . 10

3.3 Data: Alternating schwa [Œ] . 10

4 OT Analysis 13

4.1 OT Syllabi�cation of French . 13

4.2 SE: Syllable Economy (Tranel, 1999, 2000) . 17

4.2.1 Illustrative SE rankings . 18

4.2.2 Problems with Tranel's analysis . 20

5 Foma Implementation 20

5.1 The Gen function . 22

5.2 The Constraints . 23

5.3 Finding optimal candidates . 25

5.4 Implementation di�culties . 27

6 Conclusion 28

Appendices 32

1 INTRODUCTION 2

1 Introduction

Schwa/zero alternation refers to the optional deletion of interconsonantal schwa as in [sŒpano]/

[spano] for ce panneau (�this panel�). This phenomenon is one of the main domains of variation

in French phonology. This paper formalizes the optimality-theoretic approach to schwa/zero al-

ternations in French presented in Tranel (1999, 2000). As no complete analysis is provided there,

the approach is augmented with general syllable constraints. Various other approaches to the

phenomenon have been given in the context of di�erent linguistic theories. (See Dell (1973), Gen-

erative Phonology, and Jetchev (1997), Harmonic Phonology.) The strength of Tranel's (1999,

2000) approach is that it accounts for the alternations with just one Syllable Economy constraint,

whose variable ranking within the hierarchy of syllable constraints corresponds to register and rate

of speech.

For the formalization of the analysis, the Foma �nite-state calculus is used. Finite-state methods

have been successfully used to e�ciently implement generative phonology thanks to the �nite-state

calculus established in Kaplan and Kay (1994). Since the emergence of Optimality Theory (Prince

and Smolensky, 1993), several approaches have been presented to model a constraint-based analysis

within �nite-state power (Karttunen, 1998; Gerdemann and van Noord, 2000). Such an account is

not only compact as it results in a single transducer, it is also based on well-studied ground, and it

can be perfectly combined with other �nite-state natural language tools, such as a morphological

analyzer.

In the implementation presented in this paper, optimal candidates are computed according to

the Matching Approach (Gerdemann and van Noord, 2000). The Gen function and each constraint

are implemented as �nite-state transducers. By matching constraint violations against violations in

worsened candidates, non-optimal candidates are �ltered out. The implementation has instructive

character, demonstrating how an optimality-theoretic analysis is formulated in a �nite-state sys-

tem. It is furthermore a useful component in French text-to-speech systems that aim at producing

outputs in di�erent styles and speech rates. The syllabi�er, that has been implemented along the

way, can be used independently.

The paper is organized as follows: Section 2 serves as a general introduction to the topics covered

throughout the paper: Optimality Theory, �nite-state methods and how the two relate to each

other. In section 3, the data on schwa/zero alternations in French is presented. The corresponding

optimality-theoretic analysis is provided in section 4, comprising a general syllabi�cation account

and Tranel's Syllable Economy constraint. The Foma implementation is outlined and discussed in

section 5.

2 Background

2.1 Optimality Theory

Optimality Theory (OT) is a linguistic model proposed by Prince and Smolensky in 1993. It

assumes that the output forms of a language are the optimal members of a set of candidate forms.

A hierarchy of constraints is applied to the candidates in order to �nd the most optimal one by

2 BACKGROUND 3

comparison. This section introduces the basic architecture of OT.

OT has four main components (McCarthy, 2002):

Gen is the candidate generator. It constructs a possibly in�nite set of output candidates from the

given input, which, for instance, might be an underlying representation for some phonological

application. The candidates emitted by Gen are language independent because Gen is meant

to be universal.

Con is the set of constraints. All constraints in OT are violable and universal. This means that

even the winning candidate does not have to satifsfy all constraints and that Con is the same

for the grammars of all languages. There are two basic groups of constraints: faithfulness

and markedness. Faithfulness constraints require that the input and the candidate output are

identical; markedness constraints evaluate the structural well-formedness of the output.

H is the language-speci�c constraint hierarchy that explains why languages di�er from one another.

Given two con�icting constraints A and B, if A dominates B in the hierarchy (A � B), the

language is di�erent from the language which exhibits B � A (B dominates A).

Eval is the function that returns the most optimal candidate(s). Given two candidates M and

N, M is better than N on a constraint A if M violates A fewer times than N. Considering

the entire hierarchy H, the ranking of the constraints is strictly respected and the number of

violations is not globally evaluated. This strictness of strict domination says that a candidate

M that just violates one high-ranked constraint is worse than a candidate N that does not,

even if N violates many lower-ranked constraints.

The comparison of candidates is usually done in a table. The rows give di�erent candidates, the

columns contain the constraints in domination order from left to right. Constraint violations are

indicated by some mark, e.g. a star, that is shown in the corresponding cell. A pointing hand

usually indicates the optimal candidate. For illustration (Example inspired by Tranel (2000)), we

consider two constraints, Faithfulness, which requires that input and output are identical, and

*VV, a markedness constraint which prohibits sequences of two vowels. Tables 1 and 2 show the

possible rankings of the two constraints to each other resulting in two di�erent languages. The

leftmost upper cell contains the input to Gen. Candidates a and b are two members of the output

candidate set. In language X, candidate a is optimal; in language Y, candidate b is optimal. The

example illustrates again the strict character of the dominance relation.

/ai/ Faithfulness *VV

a. Z ai *
b. aCi *

Table 1: Language X: Faithfulness �
*VV

/ai/ *VV Faithfulness

a. ai *
b. Z aCi *

Table 2: Language Y: *VV � Faithful-
ness

The universal constraints unite all languages, while the speci�c grammar of one language is

nothing more than the hierarchy of these constraints. It is through the language-speci�c constraint

hierarchy H that OT can explain why and how languages di�er and also resemble each other. OT

2 BACKGROUND 4

furthermore provides an explanation for why languages have a phonology at all (Tranel, 2000).

The traditional generative theory in which the phonological rules are language-speci�c could not

answer this question. According to the OT approach, the sound material is controlled by universal

constraints, and languages therefore have a phonology.

In fact, OT has mainly been used within the area of phonology, with constraints concerning

syllabi�cation as the most prominent example. The model is however also applied to other �elds

of linguistics such as morphology and syntax.

2.2 Finite-State Technology

Finite-state technology is well known in the �eld of computer science and the properties of �nite-

state machines are well studied. This section gives an introduction to the basic notions of �nite-state

technology since it is used in this paper to model an OT analysis for syllabi�cation and schwa/zero

alternations in French. For more information please refer to Karttunen (2003) or Roche and Sch-

abes (1997).

A �nite-state automaton (FSA) consists of a �nite set of states and a �nite set of edges between

the states. Each edge is labeled with a symbol a of the alphabet Σ, on which the FSA is de�ned,

or the empty string ε. One of the states is de�ned to be the initial state and any number of states

to be �nal states.

When depicting a �nite-state automaton as a graph, the following conventions are usually used:

the leftmost state of the graph is the initial state; �nal states are indicated by a double circle.

s0 s1c s2a

s3
g

s4t

e

Figure 1: A �nite-state automaton accepting the strings cat and cage

A path is a sequence of edges that leads from the initial state to one of the �nal states. An

automaton is said to accept or recognize the string that results from the concatination of the

symbols of such a path. The set of all the paths in the automaton denotes a regular language. The

automaton in �gure 1, for example, encodes the regular language {cage, cat}.
Regular expressions are a means to exactly describe regular languages without listing all ele-

ments. Given an alphabet Σ, this family of languages contains the empty set ∅, atomic expressions

a ∈ Σ and all the expressions than can be created from that by means of Kleene star, concatination

and union. The equivalence of �nite-state automata, regular languages and regular expressions goes

back to Kleene (1956). In relation to his theorem it has also been shown that regular languages

2 BACKGROUND 5

are closed under union, Kleene star, concatenation, intersection and complementation.

A �nite-state transducer (FST) can be considered as a �nite-state automaton, in which the edges

are not labeled with single symbols but with pairs of strings of symbols. It does not encode a regular

language, but a regular relation, a set of ordered pairs. This relation maps two languages, the upper

and the lower language, to each other. The transducer translates strings from one language into

the other language. Regular relations are closed under composition, but, unlike regular languages,

regular relations are not closed under intersection and complementation (see Roche and Schabes

(1997, p. 18)).

Since a FSA can be seen as an identity transducer, i.e. a �nite-state transducer that maps every

symbol to itself, automata and transducers are often considered as equal mathematical constructs.

This assumption has also been made within the �nite-state compiler Foma (see section 5).

Having introduced the basic concepts of �nite-state methods, the next section relates them to

computational phonology.

2.3 Finite-State Phonology

Although phonological rewriting rules in SPE-tradition super�cially resemble general rewriting sys-

tems beyond regular languages, it has been shown that the way the rules are used requires only

�nite-state power Johnson (1972). Kaplan and Kay (1994) establish a high-level �nite-state calcu-

lus that allows to directly relate phonological rewriting grammars to �nite-state transducers: Each

rule corresponds to a regular relation and can therefore be compiled into a transducer. Composing

the individual transducers according to the rule ordering results in one machine that represents

the complete grammar and ensures e�cient generation and analysis. Various other �nite-state

operators have been de�ned on top of the �nite-state calculus that are especially useful for natural

language applications, for example conditional replacement (Karttunen, 1995) and directed replace-

ment (Karttunen, 1996).

The �nite-state calculus has been implemented in various systems, among them the Xerox �nite-

state toolkit XFST1, and the �nite-state compiler and library Foma2 (see Hulden (2009)), that is

used for the purpose of this paper. The syntax of the most important regular expression operators

in Foma is given in appendix A.

Apart from rewriting rules, the �nite-state calculus has also been used to implement optimality-

theoretic approaches to phonology (and OT models in general). It is obvious that the comparison

method within a table illustrated in section 2.1 is not very practical and e�cient as the tables would

be huge or even in�nite when they contain all candidates generated by Gen. E�cient computation

is therefore needed for the application of the constraints and the �nding of the optimal candidate

by Eval.

It has been claimed that if Gen encodes a regular relation, and if the constraints can be imple-

mented as �ltering identity transducers, they can be treated just as the transducers for rewriting

1http://www.stanford.edu/∼laurik/fsmbook/home.html
2http://foma.sourceforge.net/

2 BACKGROUND 6

rules (Ellison, 1994). The composition of the Gen-relation with the �ltering transducers according

to the order in the constraint hierarchy results in an e�cient and compact machine. This machine,

however, is only a simplistic approach, sometimes being called a merciless cascade, that does not

exactly represent the OT model of section 2.1. The simplistic implementation lets only perfect

candidates pass, namely those that do not violate any of the constraints, whereas OT constraints

are usually violable.

The following two sections present two ways to implement the OT model within the �nite-state

calculus, the Counting Approach and the Matching Approach.

2.3.1 The Counting Approach

To overcome the problems of the merciless cascade, Karttunen (1998) introduces the lenient compo-

sition operator on the basis of ordinary composition and priority union. With lenient composition

between the �lters, a �lter is applied if at least one candidate meets the constraint. Otherwise all

candidates are passed on.

Lenient composition cannot, however, account for the fact that in OT multiple violations of one

constraint by one candidate are possible and that the candidate that incurs the fewest violations

should be preferred. Counting and comparing the number of violations in order to �nd the optimal

candidates goes beyond �nite-state power. Since other tasks of natural language processing (such

as morphological analysis) are typically done with �nite-state tools, having to go o�-line for com-

paring OT-candidates for the phonology part is an immense drawback.

Karttunen (1998) therefore presents a method to approximate the OT analysis, the so-called

Counting Approach. Every constraint is associated with a certain predetermined upper bound on

counting violations. This can be implemented as a sequence of leniently composed constraints, the

�rst allowing for no violation, the second allowing for one violation etc. until the predetermined

bound. The counting technique exactly models the OT analysis for strings up to a certain length,

but it is not able to correctly treat input of arbitrary length. It is, however, argued in Karttunen

(1998) that having to set a bound is not considered to be a real limitation since the number of

violations is usually small. Furthermore one can argue that the length of the input string, for

instance a word, is often limited in natural language applications.

2.3.2 The Matching Approach

As an alternative to counting, Gerdemann and van Noord (2000) present an exact approach based

on matching. The Matching Approach will be described in this section in some more detail as it is

the model that has been chosen for the implementation of schwa/zero alternations in French.

For the Matching Approach, constraints are implemented as regular relations introducing one

mark, i.e. a star, per violation into the string. Marked candidates could for example be ab#*cd*

(a) and #ab*cd# (b) where abcd is the input, * the violation marker and # some markup that

has been introduced by Gen. Candidate (a) contains two stars while candidate (b) contains only

one star, so (b) should be the winner. The overall task is thus to minimize the number of stars.

2 BACKGROUND 7

The general idea is to worsen all candidates by a so-called worsening transducer. This transducer

inserts at least one additional star into every string, thus turning it into a worse candidate.3 When

subtracting the set of worse candidates from the set of all candidates, only the best candidates

remain.

define opt(X) [X - worsen(X)];4

worsen(X) will be derived step by step in the following. When the original set is compared with the

set of worsened candidates, the stars in the strings are matched up, and the additional markup (#)

does not play a role. For this reason, when constructing the worsened candidates, all additional

markup is eliminated at �rst, leaving only the original input and the stars (ab*cd* (a) and ab*cd

(b)).

define star {*};

define markup {#};

define deleteMarkup [Σ-markup | markup:ε]*;

Adding at least one star to every candidate results in an in�nite set of worsened candidates. In

the example, every string in the set of worsened candidates has at least two stars, and the string

ab*cd*, a worsened version of candidate (b), is a member of it.

define addStar [[Σ* ε:star]+ Σ*];
define deleteMarkupAndAddStar deleteMarkup .o. addStar;

Since the worsened set is supposed to act like a �lter that eliminates the bad candidates, the

markup has to be reinserted. This can be done randomly as the markup does not play a role

in the comparison process. The example worsened set now contains, amongst others, the string

ab#*cd*, a worsened version of candidate (b) with reinserted markup. This string �nally eliminates

candidate (a).

define addMarkup [Σ-markup | ε:markup]*;

define changeMarkupAndAddStar deleteMarkup .o. addStar .o. addMarkup;

define worsen(X) [X .o. changeMarkupAndAddStar]2;

The three steps � deleting the markup, inserting at least one star and reinserting the markup �

can be implemented as transducers. As the output of one transducer serves as the input for the

next step, they can be composed into one transducer. It is clear that the markup has to be deleted

before reinserting it, but whether the stars are added before or after deleting the markup or in

the very end does not play a role conceptually. There are, however, di�erences in performance

depending on the system.5

A crucial point of the Matching Approach is that bad candidates are �ltered out by other

candidates from the same input. Gen is therefore only allowed to insert markup symbols but not

3This is star-based worsening. Gerdemann (2009b) also mentions general worsening which will not be considered in

this paper.
4Foma syntax is used for the notation of regular expression and relations. See appendix A.
5personal communication, Dale Gerdemann (2009)

2 BACKGROUND 8

to change the input in any other way. Input symbols and markup symbols have to be clearly

distinguished.

As a last step, the stars in the surviving candidates have to be deleted before marking the

violations of the following constraint. This can be incorporated into opt(X).

define Pardon(X) [X .o. star -> ε]2;

define opt0(X) Pardon(X - worsen(X));

In the approach sketched so far, the constraint violations have to line up somehow to eliminate

all but the optimal candidates. Lined up stars are, however, not generally the case: Considering

the candidates a#b#*cd* (a) and abc#*d (b), one observes immediately that adding stars would

never yield a worsenend candidate that eliminates (a). Gerdemann and van Noord (2000) therefore

introduce transducers to permute the stars, in order to create strings in which the stars match up.

define permuteLeft [ε:star [Σ-star]* star:ε];

define permuteRight [star:ε [Σ-star]* ε:star];

define permuteStars [Σ* [permuteLeft | permuteRight]]* Σ*;
define permute1(X) [X .o. permuteStars]2;

define permute2(X) [X .o. permuteStars .o. permuteStars]2;

...

define worsen1(X) permute1(worsen(X));

define worsen2(X) permute2(worsen(X));

...

define opt0(X) Pardon(X - worsen(X));

define opt1(X) Pardon(X - worsen1(X));

define opt2(X) Pardon(X - worsen2(X));

...

As Gerdemann (2009b) states, this technique only approximates the permutation of stars, and

the number of permutations needed to �lter out all but the optimal candidates might be unbounded.

It turns out, however, that in practical applications only opt0 and opt1 are needed to obtain an

exact implementation. The exactness test described in Gerdemann and van Noord (2000) can

be used to determine how much permutation is needed. Starred is an automaton representing

candidates that have been marked up for a given constraint. Please refer to section 5.3 for the

function Unflatten(X).

Exactness test

define isOptimized(Starred) _isfunctional([Unflatten(Starred) .o. [Σ-star -> ε]]);

Gerdemann and van Noord (2000) furthermore report that the resulting transducer imple-

menting the Matching Approach is considerably smaller than the transducer one obtains from the

Counting Approach. Additionally, constructing the transducer is usually much faster.

3 SCHWA/ZERO ALTERNATIONS IN FRENCH 9

This section has provided an introduction to OT and �nite-state methods. It has furthermore

been shown how the two relate to each other. The following section concentrates on the linguistic

data for schwa/zero alternations in French.

3 Schwa/Zero Alternations in French

French exhibits an interconsonantal schwa/zero alternation as in the examples (1) (Tranel, 1999)

and (2) (Jetchev, 1997).

(1) ce panneau

�this panel�

a. [sŒpano]

b. [spano]

(2) Jean secoue (la branche)

�John is shaking (the branch)�

a. [ZÃsŒku]

b. [ZÃsku]

The vowel schwa that sometimes disappears in spoken language is one of the main areas of phono-

logical variations in French. The dropped schwa is tranditionally referred to as `E muet', `E caduc'

or `E instable'. Whether the optional elision of schwa in a certain environment is allowed at all,

is mainly determined by syllable structure. It furthermore depends on the dialect and personal

preference of the speaker, and on the speed and register of the speech, whether the schwa is actu-

ally pronounced or not.

The following sections provide some remarks on the language that is taken as reference in this

paper, present schwa in the French sound system and give the data which the approach wants to

account for.

3.1 Remarks on the language of reference

As Dell (1973) points out, the behavior of schwa highly varies from one speaker to another, even if

their pronunciation is otherwise very similiar. It might therefore be the case that two people, even

though they have about the same geographical, cultural, linguistic and educational background,

do not agree in their pronunciation concerning schwa. As a consequence, linguistic analysis of

schwa/zero alternations is often not based on homogeneous data. (See Jetchev (1997) for an

overview.) Dell (1973, and other puplications) uses his own variety of French (the `Parisian stan-

dard' French) as basis for his linguistic descriptions and analyses. His data has also been taken as

a point of reference by other phonologists and is considered to be close to the `social norm'.

The paper at hand also takes Dell's `Parisian standard' French as a point of reference, but the

analysis given in section 4 could easily be modi�ed and expanded to account for other regional

dialects such as Canadian French or southern French (Midi French). The data does not have to be

restricted to a certain stylistic variant or speech tempo, since the strength of Tranel's (1999, 2000)

analysis is precisely to explain all those variations.

3 SCHWA/ZERO ALTERNATIONS IN FRENCH 10

3.2 Schwa in the French vowel system

French has two high front vowels ([i], [y]), four mid front vowels ([e], [ø], [E], [œ]), one low front

vowel ([a]), one high back vowel ([u]), two mid back vowels ([o], [O]), one low back vowel ([A]), and

four nasal vowels ([Ẽ], [œ̃], [Ã], [õ]) (Tranel, 1987b).

The alternating vowel schwa usually does not surface as [@], but as a sound close to the mid front

rounded vowel [œ]. It is, however, not the case that any [œ] can possibly be deleted, as the exam-

ples (3) and (4) (Tranel, 1987b, p. 87) show. Both phrases can be pronounced [dÃlœretablismÃ],

but only in dans le rétablissement (3) the pronunciation without [œ] is possible.

(3) dans le rétablissement

�in the re-establishment�

a. [dÃlœretablismÃ]

b. [dÃlretablismÃ]

(4) dans leur établissement

�in their shop�

a. [dÃlœretablismÃ]

b. * [dÃlretablismÃ]

The surfacing [œ]s as in (3) and (4) are therefore usually grouped into two di�erent categories:

unstable [œ] which alternates with zero in certain environments and stable/non-alternating [œ]. To

account for the data, di�erent underlying representations are assumed (Dell, 1973; Jetchev, 1997):

stable [œ] is underlyingly /œ/, whereas in this paper the symbol /Œ/ is used for the alternating

vowel schwa. When /Œ/ is realized, it is generally pronounced as [œ], or as a sound between [œ]

and [ø] (Dell, 1973). Throughout this paper, [Œ] is used as the transcription for schwa, indicating

that the underlying form is /Œ/ and that the actual realization varies from speaker to speaker. This

also helps to visually distinguish alternating schwa and stable [œ] in the transcriptions provided.

As a consequence, (3 a.) should be transcribed as [dÃlŒretablismÃ].

3.3 Data: Alternating schwa [Œ]

The alternating vowel schwa can always be dropped in certain environments. In other occurences,

elision of schwa is only possible for some speakers or in fast speech. This section gives an overview

of instances of schwa/zero alternations.6

Schwa can always be dropped after one consonant if this consonant can assume the coda position

of the preceding syllable. This is the case in examples (2), (3), (5) (Jetchev, 1997) and (7) (Tranel,

1999). If the preceding coda is already occupied, deletion of schwa is mostly not possible, since

this would result in a complex coda. It is generally argued that codas in French contain at most

one consonant. (See for example Dell (1995).) Examples for the non-deletion of schwa because of

complex codas [kl]/[ks] are provided in (6) and (8) (Jetchev, 1997).

6Alternating schwa at the word end in order to break up heavy consonant clusters ([Ẽ.kõ.tak.tŒ.po.sibl]/

[Ẽ.kõ.takt.po.sibl]) is a di�erent type of phenomenon and not treated in this paper.

3 SCHWA/ZERO ALTERNATIONS IN FRENCH 11

(5) Henri le soutient

�Henry supports him�

a. [Ã.ri.lŒ.su.tjẼ]

b. [Ã.ril.su.tjẼ]

(6) Jacques le soutient

�Jack supports him�

a. [Zak.lŒ.su.tjẼ]/[Za.klŒ.su.tjẼ]7

b. * [Zakl.su.tjẼ]

(7) dans le panneau

�in the panel�

a. [dÃ.lŒ.pa.no]

b. [dÃl.pa.no]

(8) Jacques secoue (la branche)

�Jack is shaking (the branch)�

a. [Zak.sŒ.ku]

b. * [Zaks.ku]

Some speakers, however, allow the deletion of schwa in some special cases even if it results in a

complex coda. This can be shown with example (9) taken from Tranel (1999) and example (10)8.

In these cases the preceding coda is already occupied by /r/. The complex coda [rd]/[rt] has falling

sonority and therefore obeys well-known syllable sonority principles. At the word end, where com-

plex codas are allowed in French (Dell, 1995), [rd] and [rt] are well attested (sourde [surd], carte

[kart]).

(9) sur de personne

�sure of no one�

a. [syr.dŒ.pEr.sOn]

b. ? [syrd.pEr.sOn]

(10) pour te parler

�to speak to you�

a. [pur.tŒ.par.le]

b. ? [purt.par.le]

Schwa can also be deleted if the preceding consonant can be syllabi�ed into the following syllable

as a complex onset. Example (1) illustrates this case of schwa/zero alternation: The schwa can be

dropped easily because [sp] is a well-formed French onset (sport [spOr]). In example (11) (Tranel,

1999), as a contrast, deletion of schwa yields the complex onset cluster [lp], which is less well formed

than [sp]. Some speakers, nevertheless, accept forms like [lpa.no]. Then they also permit [spa.no].

Coming back to example (8), this means that the deletion of schwa should be possible, namely

with the syllabi�cation [Zak.sku], because [sk] is a well-formed French onset (ski [ski]).

In (12) (Jetchev, 1997), the consonant cluster [dkr], that is created by the deletion of schwa, is

not an admissible onset in French (and nor is [kd] an admissible coda).

(11) le panneau

�the panel�

a. [lŒ.pa.no]

b. ?? [lpa.no]

(12) un bac de crapauds

�a tub of toads�

a. [Ẽ.bak.dŒ.kra.po]

b. * [Ẽ.bak.dkra.po]

7Both syllabi�cations are conceivable. Which one is chosen depends on the syllabi�cation algorithm.
8The syllabi�cations [syr.dpEr.sOn] and [pur.tpar.le] should also be considered. The complex onsets have, however,

no rising sonority, and are hardly possible.

3 SCHWA/ZERO ALTERNATIONS IN FRENCH 12

In sequences of syllables with a schwa nucleus, the patterns correspond to those of a single

schwa. (The examples are taken from Jetchev (1997).) In (13), the second schwa can be deleted

without controversy as the preceding /r/ assumes the coda position of the preceding syllable (b).

The elision of the �rst schwa can be explained in the same way (c). One could also argue that [dr]

builds a complex onset which conforms to the syllabi�cation given in Dell (1995). It is, however,

not possible to delete both schwas at the same time, as this results in an unpronouncable consonant

cluster, no matter how the phrase is syllabi�ed (d).

Phrases (14 b) and (14 d) can be explained in parallel to (13). But dropping the �rst schwa

in [pat.dŒ.rŒ.nar] is di�erent since the preceding coda is already occupied by /t/, and [td] is not

an admissible coda. Jetchev (1997) therefore judges the sequence [patdrŒnar] as ungrammatical.

One might, however, assume that /d/ creates the complex onset [dr] as in dromadaire [drOmadEr]

which yields the syllabi�cation shown in (14 c). Although this is unattested in the literature, the

author of this paper accepts this pronunciation.

(13) (une) queue de renard

�(a) fox's tail�

a. [kø.dŒ.rŒ.nar]

b. [kø.dŒr.nar]

c. [kød.rŒ.nar]/[kø.drŒ.nar]

d. * [kødrnar]

(14) (une) patte de renard

�(a) fox's paw�

a. [pat.dŒ.rŒ.nar]

b. [pat.dŒr.nar]

c. ? [pat.drŒ.nar] (?)

d. * [patdrnar]

The phrase envie de te le demander with four schwas has the following eight possible realiza-

tions according to Jetchev (1997). They are all based on the fact that the consonant in the onset

is syllabi�ed into the coda of the preceding syllable when schwa is deleted.

(15) (j'ai) envie de te le demander

�(I) feel like asking you�

a. [Ã.vi.dŒ.tŒ.lŒ.dŒ.mÃ.de]

b. [Ã.vid.tŒl.dŒ.mÃ.de]

c. [Ã.vi.dŒt.lŒd.mÃ.de]

d. [Ã.vid.tŒ.lŒd.mÃ.de]

e. [Ã.vid.tŒ.lŒ.dŒ.mÃ.de]

f. [Ã.vi.dŒt.lŒ.dŒ.mÃ.de]

g. [Ã.vi.dŒ.tŒl.dŒ.mÃ.de]

h. [Ã.vi.dŒ.tŒ.lŒd.mÃ.de]

4 OT ANALYSIS 13

4 OT Analysis

The analysis for schwa/zero alternations in French provided here is given within the framework of

OT. Tranel (1999) and Tranel (2000, in French, provides the same content but more background)

present an approach which is entirely based on syllable structure constraints. Moreover, it is the

ranking of a constraint concerning syllable economy (SE) that is responsible for whether schwa is

pronounced or not.

Tranel (1999, 2000) assumes that the alternating schwa as presented in section 3.3 has phono-

logical status. This corresponds to the general account given in the literature. (See Dell (1973).)

Examples such as (16) and (17) show that the phenomenon cannot be explained by epenthesis.

When assuming the underlying forms /sEtpluz/ and /sEtplas/, the insertion of /Œ/ in the same

phonological environment incorrectly predicts (17 a).

(16) cette pelouse

�this lawn�

a. [sEtpŒluz]

b. ? [sEtpluz]

(17) cette place

�this place�

a. * [sEtpŒlas]

b. [sEtplas]

Unfortunately, Tranel (1999, 2000) does not give a full OT analysis for schwa/zero alternations,

but just presents the main points illustrated by examples. It is essentially the syllable analysis that

is not treated in the two papers. Since no OT account for syllabi�cation of French has been found

in the literature, the following section (4.1) provides the constraints for syllable segmentation in

French. Building up on the syllabi�cation constraints, Tranel's (1999, 2000) approach is presented

in section 4.2.

4.1 OT Syllabi�cation of French

Dividing a word/phrase into phonological syllables is a non-trivial problem. In particular for

French, various syllabi�cation theories have been put forward (Goslin and Frauenfelder (2000) for

an overview). There is no general agreement about how French utterances are supposed to be

segmented into syllables. The paper, including the implementation, follows Dell (1995, pp. 14-16):

1. A prevocalic consonant is tautosyllabic with the following vowel.

2. In an Obli cluster the two consonants are tautosyllabic.

3. A postvocalic consonant is tautosyllabic with the preceding vowel, provided no con�ict arises

with (1.) and (2.).

4. A coda contains at most one consonant.

Obli stands for a sequence of obstruent and liquid from the following set /pl, pr, bl, br, fl, fr, vl,

vr, tr, dr, kl, kr, gl, gr/, and the set of consonants does not include glides. To account for glides, it

is furthermore assumed that intervocalic clusters consisting of one or two consonants followed by

a glide are not broken up (Féry, 2001). Word-�nal consonant clusters are usually an exception to

(4.), e.g. peste �plague� [pEst]. How exactly one would structure these complex rhymes is only of

marginal interest for this application. A �at representation, in which the syllable boundaries are

4 OT ANALYSIS 14

marked, provides su�cient information. The foregoing assumptions yield the following illustrative

syllabi�cations: [Ẽs.tryk.tœr], [at.la.ab.strE], [lŒ.Zar.dẼ], [y.na.ni.ma.sjõ].

As follows from Dell (1995), in French each vowel is parsed as the nucleus of a syllable. Onset

and coda are optional, but onsets are preferred over codas. In OT, this is covered by the universal

markedness constraints Onset and NoCoda as given in Kager (1999, Ch. 3).

Onset : Syllables must have onsets.

NoCoda : Syllables are open.

In French, Onset and NoCoda seem to have no speci�c ordering with respect to each other. No

matter which of the two constraints would be ranked �rst, they yield the same most optimal result,

see tables 3 and 4.

Table 3

/pano/ Onset NoCoda

a. Z pa.no
b. pan.o * *

Table 4

/arÕdi/ Onset NoCoda

a. Z a.rÕ.di *
b. ar.Õ.di ** *
c. ar.Õd.i *** **

The faithfulness constraints Max prevent deletion of input segments.9 The partial ranking

Max(V)�Max(Schwa) is taken from Tranel (1999, 2000) and further elaborated on in section 4.2.

For completeness, the constraint Max(C) is introduced. I assume that Max(C) and Max(V)

have no speci�c ordering with respect to each other.10 {Max(C), Max(V)} must be the highest

ranked constraint so far, since the deletion of other sounds than schwa is not a possible strategy

in French syllabi�cation. Max(Schwa) has to be ranked lower than the syllabi�cation constraints

because schwa may be deleted to obtain well-formed syllables. Table 5 illustrates the e�ects of

the Max constraints. The low-ranked Max(Schwa) eliminates candidate b. We will see later that

Max(Schwa) is a violable constraint and that a higher ranked constraint may rule out candidate

a, leaving b as the optimal candidate.

Max(X) : Input segments of the type X have output correspondents.

Max(V) : Input vowels, except schwa, have output correspondents.

Max(Schwa) : Input schwas have output correspondents.

*ComplexOnset (Kager, 1999, Ch. 3) prohibits more than one consonant in an onset. In

French, this constraint has to be ranked above {Onset, NoCoda}, as can be seen in table 6.

9A complete analysis would also have to include the counterpart constraint Dep(X) which ensures that output

segments have input correspondents, thereby preventing insertion. Since the analysis at hand is only concerned with the

deletion of sounds, this constraint is left out.
10This might be a simpli�cation of the facts which does not a�ect the analysis of schwa/zero alternations. However,

for other phenomena such as `liaison', one might have to reconsider this ordering.

4 OT ANALYSIS 15

Table 5

/sŒpano/ Max(C) Max(V) Onset NoCoda Max(Schwa)
a. Z sŒ.pa.no
b. spa.no *
c. Œ.pa.no * *
d. sŒp.no * *
e. sŒ.no * *

Table 6

/atla/ *ComplexOnset Onset NoCoda

a. a.tla * *
b. Z at.la * *
c. atl.a ** *

Tranel (1999, 2000) suggests that *ComplexOnset actually covers a whole hierarchy of constraints

that incorporate well-formedness conditions on syllable onsets, such as the sonority sequencing

principle. For French, this means ruling out onsets of more than three consonants, prohibiting

onsets of three consonants that do not respect the sonority hierarchy (e.g. /dsw/), prohibiting

onsets of two consonants that do not respect the sonority hierarchy (e.g. /td, lp/), and furthermore

prohibiting admissible three-consonant (e.g. /str, trw/) and two-consonant onsets (e.g. /tw, sp,

dr/). The constraints must furthermore be ranked according to their admissibility. Obviously, most

of them do not interact with each other, so no strict dominance relation can be established between

all of them. Nevertheless, the interaction with other constraints, such as NoCoda and the syllable

economy constraint SE, provides some more evidence for the ordering. The onset constraints are

accordingly grouped, and the groups are ranked. This hierarchy could for example be the following:

{*CCCC(Onset), *dsw(Onset), . . . }1 � {*td(Onset), . . . }2 � {*lp(Onset), . . . }3 �
{*str(Onset), . . . }4 � {*sp(Onset), . . . }5 � {*trw(Onset), *tw(Onset), . . . , *Obli(Onset)}6 .

*CCCC(Onset) : Onsets must not have four or more consonants.

*xyz(Onset) : Onsets must not be /xyz/.

*xy(Onset) : Onsets must not be /xy/.

In the following, the constraints of group n are taken to be unordered with respect to each other

and called *ComplOnsetn as a group. Group 1 prohibits onsets of four consonants, and onsets

of three consonants that do not correspond to well-established onset conditions (sonority principle,

special behavior of the fricative /s/). Group 2 and 3 rule out onsets of two consonants that do

not have rising sonority or that are not considered as admissible onsets. However, the clusters in

group 2 are considered �worse� than those in group 3. Group 4 rules out admissible CCC onsets

that do not end in a glide, group 5 admissible CC onsets that are not Obli and that do not end in

a glide, and group 6 Obli onsets and onsets of two or three consonants that end in a glide. The

lowest-ranked group 6 thus contains well-formed onsets that are always clustered together, so that

the �rst consonant is never syllabi�ed as the preceding coda. Ranking NoCoda between group 5

4 OT ANALYSIS 16

and 6 yields this syllabi�cation. This is illustrated in tables 7 and 8: The Obli cluster /kr/ builds

an onset, while /bs/, which is not matched by group 6, is broken into coda and onset. Within

this hierarchy, *ComplOnset6 is not active. It is either not violated or violated by the optimal

candidate.

Grouping and ranking of the onset constraints is not only governed by general syllable conditions,

but also by the dialect and the speaker's individual preferences. Group 2 and 3 for instance might

often be merged into one group, but for some speakers it makes sense to keep them apart as will

be shown in section 4.2.1.

Table 7

/ObsEn/ *ComplOnset2 Onset NoCoda

a. O.bsEn * *
b. Z Ob.sEn * *
c. Obs.En ** *

Table 8

/akro/ Onset NoCoda *ComplOnset6

a. Z a.kro * *
b. ak.ro * *
c. akr.o ** *

The *ComplexCoda constraint (Kager, 1999, Ch. 3) can be given an analysis in parallel to

*ComplexOnset: an internal hierarchy of constraints describing admissibility of codas. For the

many speakers that do not allow for complex codas at all, the whole coda hierarchy is just ranked

directly before (or after) *ComplOnset1. However, other speakers accept complex codas of two

consonants in general ([a.vEkl.pa.no]) or that have falling sonority ([syrd.pEr.sOn]), which assumes

the following coda hierarchy: {*CCC(Coda), . . . }1 � {*kl(Coda), . . . }2 � {*rd(Coda), . . . }3.

Group 1 rules out codas of three or more consonants, group 2 rules out codas of two consonants

that do not have falling sonority and group 3 rules out codas of two consonants that respect the

sonority hierarchy. The constraints in group n will be called *ComplCodan. It is assumed that

the *ComplCodan constraints do not apply at the word end as French exhibits complex word-�nal

onsets.

*CCC(Coda) : Codas must not have three or more consonants.

*xy(Coda) : Codas must not be /xy/.

As already indicated for speakers that do not accept complex codas, the hierarchy of complex

onset constraints and the hierarchy of complex coda constraints are interspersed. How exactly one

hierarchy is interspersed with the other, depends on the speaker, and probably also on style and

speech rate. For the purpose of illustration, let us assume the following partial hierarchy which

correctly predicts the examples given in Tranel (1999, 2000): {*ComplOnset1, *ComplCoda1} �
*ComplOnset2 � *ComplCoda2 � *ComplOnset3 � *ComplCoda3 � *ComplOnset4 � *Com-

plOnset5 � *ComplOnset6. The constraints might well be more unordered in reality, thus more

research is needed here. This hierarchy, however, yields the correct syllabi�cation of the input

phrases tested (see appendix C), and no evidence against it could be found. For implementation

purposes, the constraints need to be strictly ranked anyway.

Table 9 illustrates how the intervocalic cluster /str/ is syllabi�ed. Here again, it is crucial

that *ComplOnset6 is ranked below and *ComplOnset4 above NoCoda to obtain the correct

4 OT ANALYSIS 17

syllabi�cation of /str/ according to Dell (1995). Table 10 shows the syllabi�cation of the intervocalic

cluster /rdp/ which is created by elision of schwa. From the depicted candidates, candidate c is most

optimal since this speaker prefers an [rd]-coda over an [dp]-onset. However, with the constraints

considered so far, [syr.dŒ.pOl] is even more optimal as it does not have a complex coda at all. The

syllable economy constraint SE, introduced in the next section, provides this missing piece.

Table 9

/Ẽstryktœr/ *ComplCoda1 *ComplCoda2 *ComplOnset4 Onset NoCoda *ComplOnset6

a. Ẽ.stryk.tœr * * **
b. Z Ẽs.tryk.tœr * *** *
c. Ẽst.ryk.tœr * * ***
d. Ẽstr.yk.tœr * ** ***

Table 10

/syrdŒpOl/ *ComplOnset1 *ComplCoda1 *ComplOnset2 *ComplCoda3 Onset NoCoda

a. sy.rdpOl * *
b. syr.dpOl * **
c. (Z) syrd.pOl * **
d. syrdp.Ol * * **

4.2 SE: Syllable Economy (Tranel, 1999, 2000)

Tranel (1999, 2000) accounts for the interconsonantal schwa/zero alternations as presented in

section 3.3 with one single constraint that is called Syllable Economy (SE). SE belongs to the

family of *Struc constraints (Prince and Smolensky, 1993) that ensure that the candidates are of

minimal structure. As every syllable in a candidate is counted as a violation of SE, SE is basically

violated by every candidate.

Concerning the optional deletion of schwa, if one considers only the SE constraint, a candidate

without schwa will always be more optimal than a candidate with schwa because the non-realization

of schwa yields one syllable less. Whether an alternating schwa is pronounced or not, depends there-

fore on constraints that are ranked higher than SE which are violated if a schwa is deleted. Those

constraints are markedness constraints concerning syllable structure and admissible consonsant

sequences.

The variable ranking of the SE constraint within the constraint hierarchy H accounts for the

optional character of the elision of schwa. Its position correlates with the style of the speaker

and the speech rate, and furthermore explains the variations concerning schwa/zero alternations

between di�erent speakers. Generally, the more informal and faster the speech, the higher ranked

SE is in the constraint hierarchy. If SE is ranked relatively low, all schwas are pronounced, while

they are more likely to be deleted when SE is ranked high.

Tranel (1999, 2000) explains the fact that the alternations described in section 3.3 in standard

French only concern schwa and not the other vowels with the hierarchy Max(V) � Max(Schwa).

4 OT ANALYSIS 18

This re�ects the �weak� character of schwa that is often analysed as being ��oating� (without an

anchor) in contrast to the other anchored vowels (Jetchev, 1997; Tranel, 1987a). In standard French,

SE may dominate Max(Schwa), but despite its variable character, it is obligatorily dominated by

Max(V): Max(V) � SE � Max(Schwa). In other languages or dialects of French, SE might

well climb higher in the hierarchy that is incorporated internally in Max(V): Max(lowV) �
Max(midV) � Max(highV) � Max(Schwa) (Tranel, 1999).

The following section illustrates how SE interacts with the syllabi�cation constraints, providing

an analysis for schwa/zero alternations.

4.2.1 Illustrative SE rankings

(18) ce panneau

�this panel�

a. [sŒpano]

b. [spano]

(19) le panneau

�the panel�

a. [lŒ.pa.no]

b. ?? [lpa.no]

Example (1), reproduced here as (18), shows a phrase for which the pronunciation with schwa (a) as

well as without schwa (b) is allowed. Tranel (1999, 2000) explains the two options with the variable

ranking of SE. If SE is placed below the constraint *sp(Onset), a rather low-ranked constraint

within our *ComplOnsetn hierarchy, /Œ/ surfaces because a candidate with rather unmarked

syllables (a) is preferred over a candidate with a complex onset (b) (Table 11). Tranel (1999, 2000)

furthermore states that SE climbs up in the hierarchy H according to speech style and rate, so that

it dominates *sp(Onset) (Table 12). Having a minimal number of syllables is then the deciding

factor for the optimal candidate.

There is, however, an individual upper limit for the ranking of SE. For speakers that do not

accept the deletion of schwa in /lŒpano/ (example (11), reproduced as (19)), SE does not dominate

*lp(Onset) as shown in table 14 (Tranel, 1999, 2000). As a result, schwa is always realized to

avoid the complex onset /lp/. Generally speaking, SE is ranked below *ComplOnset3 for this

speaker.

If a speaker allows SE to dominate *lp(Onset), and therefore accepts [lpa.no], this speaker

necessarily also accepts [spa.no] according to Tranel (1999, 2000), as the established hierarchy is

*lp(Onset) � *sp(Onset) This corresponds to the syllabi�cation analysis given in section 4.1

where the hierarchy is *ComplOnset3 � *ComplOnset5.

Table 11

/sŒpano/ *lp(Onset) *sp(Onset) SE
a. Z sŒ.pa.no ***
b. spa.no * **

Table 12

/sŒpano/ *lp(Onset) SE *sp(Onset)
a. sŒ.pa.no ***
b. Z spa.no ** *

The syllable economy constraint SE also interacts with coda constraints. Tranel (1999, 2000)

accounts for the two possible pronunciations of dans le panneau in example (7) with the vari-

able ranking of SE with respect to NoCoda: The pronunciation with schwa is produced if SE is

4 OT ANALYSIS 19

Table 13

/lŒpano/ *lp(Onset) *sp(Onset) SE
a. Z lŒ.pa.no ***
b. lpa.no * **

Table 14

/lŒpano/ *lp(Onset) SE *sp(Onset)
a. Z lŒ.pa.no ***
b. lpa.no * **

ranked lower than NoCoda as shown in table 15. Ranking SE higher than NoCoda yields the

pronunciation without schwa, which has fewer syllables (Table 16).

Table 15

/dÃlŒpano/ NoCoda SE
a. Z dÃ.lŒ.pa.no ****
b. dÃl.pa.no * ***

Table 16

/dÃlŒpano/ SE NoCoda

a. dÃ.lŒ.pa.no ****
b. Z dÃl.pa.no *** *

Tranel (1999, 2000) further explains the data in example (6) [Zak.lŒ.su.tjẼ]/ *[Zakl.su.tjẼ] in

contrast to example (9) [syr.dŒ.pEr.sOn]/ ?[syrd.pEr.sOn] by the interaction of the SE constraint

with the hierarchy of *ComplCoda constraints. This hierarchy includes *kl(Coda)� *rd(Coda),

or more generally, as established in section 4.1, *ComplCoda2 � *ComplCoda3. Intercalating

SE between the two constraints yields a speaker that allows [syrd.pEr.sOn] but not [Zakl.su.tjẼ] in

a certain style and speech rate. The corresponding tables are 17 (taken from Tranel (1999)) and

18. This ranking clari�es why it makes sense to devide two-consonant codas into di�erent groups

according to their admissibility (see 4.1). If neither [Zakl.su.tjẼ] nor [syrd.pEr.sOn] is accepted,

SE is ranked below *rd(Coda), probably lower than the complete *ComplCodan hierarchy. If

both are permitted, SE's position is higher than *kl(Coda), probably between *ComplCoda1

and *ComplCoda2.

Table 17

/syrdŒpErsOn/ *kl(Coda) SE *rd(Coda)
a. syr.dŒ.pEr.sOn ****
b. Z syrd.pEr.sOn *** *

Table 18

/ZaklŒsutjẼ/ *kl(Coda) SE *rd(Coda)
a. Z Zak.lŒ.su.tjẼ ****
b. Zakl.su.tjẼ * ***

Tranel (1999, 2000) mentions one additional constraint that prohibits sequences of consonant

+ liquid + glide. This is however not a syllable constraint, and it is treated as a simpli�cation of

the facts. It is therefore neglected in the approach at hand. Data in which schwa is followed by an

`h-aspiré' requires more than the presented constraints (Tranel and Gobbo, 2002). These cases are

not considered here.

As it has been shown, Tranel (1999, 2000) can account for schwa/zero alternations by pointing

out only one additional constraint. The strength of this constraint-based analysis is furthermore

that it manages to explain the variation between di�erent speakers, establishing speci�cally that

speech rate and style correspond to the position of SE in the constraint hierarchy H. This elegant

5 FOMA IMPLEMENTATION 20

analysis, however, does not cover all the data presented in section 3.3 as will be shown in the

following section.

4.2.2 Problems with Tranel's analysis

Tranel's (1999, 2000) analysis for schwa/zero alternations has a considerable weak point when it

comes to input strings with more than one schwa. If the deletion of several schwas depends on

the same constraint, either the candidate preserving all schwas is optimal (SE is ranked low), or

the candidates with the highest number of deleted schwas are optimal (SE is ranked higher than

the constraint that rules out these candidates). As Tranel (1999, 2000) presents his approach,

there is no way to explain output forms in which some but not all possibly deletable schwas are

elided. Considering example (15) envie de te le demander, the candidate in which all four schwas

are realized (a) is optimal as long as NoCoda dominates SE. If SE climbs up in the hierarchy,

candidates (b)-(d) with two of four surfacing schwas are optimal, as they have the fewest syllables.

Candidates (e)-(h) with three of four surfacing schwas, however, will never be optimal as they either

lose against (a) applying the NoCoda constraint, or against (b)-(d) applying the SE constraint,

although they are well-formed and attested output forms.

There is another, slightly di�erent problem, that is additionally related to the given syllable

constraints. The forms (13 a) [kø.dŒ.rŒ.nar] and (14 a) [pat.dŒ.rŒ.nar] are correctly predicted

if SE is ranked su�ciently low. However, when SE moves up and dominates *ComplOnset6

(*dr(Onset)), the candidates [kø.drŒ.nar] and [pat.drŒ.nar] are the most optimal, while the forms

in which the second schwa is deleted never surface. The reason for this is the low ranking of

*ComplOnset6 comprising Obli onsets. It is dominated by NoCoda to formulate Dell's (1995)

syllabi�cation that preferes [kø.drŒ.nar] over [kød.rŒ.nar]. In the example at hand [kø.drŒ.nar]

competes with [kø.dŒr.nar], which violates the same constraints as [kød.rŒ.nar] (but in di�erent

locations) and is therefore eliminated from the set of candidates. In example (14), the situation

is about the same. [pat.dŒr.nar] (three violations of NoCoda) loses against [pat.drŒ.nar] (two

violations of NoCoda, one violation of *ComplOnset6). The ranking of SE does not even play a

role here, as both candidates have the same number of syllables. One could argue that the deletion

of the �rst schwa should not be possible at all because the preceding coda is already occupied.

However, as Tranel's (1999, 2000) analysis allows [spa.no], it should also allow [drŒ.nar].

It is not immediately clear how these problems, that are supported by the output of the im-

plemented system (section 5), can be solved. Di�erent syllable constraints that do not follow Dell

(1995) probably lead to the desired output forms in cases like examples (13) and (14). However,

the problem of constraint violations in di�erent domains might also occur in other examples. The

forms of envie de te le demander in which only one schwa is deleted, might furthermore arise from

the interaction with other constraints that are not mentioned in Tranel (1999, 2000).

5 Foma Implementation

Having established the necessary constraints, the OT analysis of schwa/zero alternations in French

including syllabi�cation is formulated within �nite-state power in this section. The Matching

5 FOMA IMPLEMENTATION 21

Approach will be adopted since the input might theoretically be arbitrarily long. The foregoing

analysis in section 4 will be formalized using the �nite-state compiler and library Foma.

The general idea is to provide a regular relation Gen that maps the input to a set of candidates

with freely introduced syllable boundaries and deleted sounds. The constraints are implemented as

replacement rules that insert violation markers (stars) into the candidates. Composing the Gen-

transducer with a constraint transducer yields a transducer representing the starred candidates.

The opt0(X)/opt1(X)/... functions given in section 2.3.2 turn it into a transducer representing

only the optimal candidates with respect to the constraint. The following sections provide an

outline of the implementation of the Gen function, of the constraints and how everything is put

together.

First of all, some basic de�nitions are provided in order to simplify de�ning the following regular

expressions: sound segments that are useful for phonological analysis, and a word boundary symbol,

which is needed in the process of syllabi�cation. All these symbols are input symbols, meaning that

the input string is made of sound segments and word boundaries.

Vowels

define Schwa ×;

define VWithoutSchwa11 [u | o | O | A | i | y | e | ø | %E | a | ÷]; 12

define V [VWithoutSchwa | Schwa];

Consonants

define Glide [4 | w | j];

define Obstruent [p | b | f | v | k | g | t | d | s | z | S | Z];

define Liquid [l | r];

define Nasal [m | n | ñ | N];

define Con [Obstruent | Liquid | Nasal];

define C [Glide | Con];

Sound segments

define Seg [V | C];

Word boundary

define WB %#; 12

As can be seen from the de�nitions, no general treatment for �oating segments is implemented.

Schwa is de�ned as a regular vowel. Its actual pronunciation (see section 3.2) is determined else-

where. Schwa can be deleted as any other vowel. Its unstable character is accounted for by the

ranking of the Max constraints (see section 4.1).

11The four nasal vowels ([Ẽ], [œ̃], [Ã], [õ]) are left out as they just act like normal vowels and do not con-

tribute anything special to syllabi�cation or schwa/zero alternations. In the implementation, their non-nasal counter-

parts ([E], [œ], [A], [o]) are used. They could however easily be added to VWithoutSchwa.
12Some symbols have to be escaped because they have a special meaning in Foma.

5 FOMA IMPLEMENTATION 22

5.1 The Gen function

The Gen function must ful�ll two goals: (1) optionally delete sound segments from the input13

and (2) parse the input into syllables. As Gen has to be general and productive, every possible

candidate has to be generated, no matter how weird it may be.

Deletion of segments. A real deletion of input segments in Gen is not possible within the

Matching Approach as it requires that the input symbols are not changed. Deletion can, however,

be simulated by inserting editing instructions, i.e. deletion markers. As Gerdemann (2009b)

suggests, a (phonetic) module is then responsible for undertaking the real changes at the very end.

Consequently, a deleted segment is de�ned as the sequence of a deletion marker and a segment.

In Gen, a deletion marker is optionally inserted before any segment of the input string. This is

formalized in the DeleteSeg transducer.

define Del %%D; # Deletion marker

define DeletedSeg [Del Seg]; # Deleted segment

Insert deletion markers

define DeleteSeg [[..] (->) Del || _ Seg];

Insertion of syllable markers. The basic idea is to insert syllable markers everywhere into the

input string. The syllabi�cation constraints are then in charge to �lter out the correctly syllabi�ed

candidates. Nevertheless, some language-speci�c obligatory constraints are incorporated in Gen

to get rid of constraints that do not play a role in the approach to schwa/zero alternations at

hand: every vowel in French provides the nucleus of exactly one syllable. The nucleus is put in

parentheses, which is not strictly necessary with the above restriction but makes it easier to refer to

onset and coda in the constraints. The word boundary marker and deleted segments need a special

treatment in the syllable de�nitions because a syllable boundary before or after those elements

yields the same syllabi�cation. Deleted segments are therefore always grouped with the following

segment, as can be seen in the de�nitions of SOnset, SCoda and SNucleus. In the de�nition of

Syllable, word boundaries are ignored in the �rst step.

define SB %.; # Syllable boundary

define rNuc %); # Nucleus: right bracket

define lNuc %(; # Nucleus: left bracket

define Nuc [rNuc | lNuc]; # Nucleus markers

define Syll [Nuc | SB]; # Syllable markers

Syllable definitions

define SOnset [DeletedSeg* C]*;

define SCoda [DeletedSeg* C]*;

define SNucleus [lNuc DeletedSeg* V rNuc];

13In order to have a universal Gen function, it should also optionally insert sound segments into the input. The corre-

sponding constraint Dep(X) that ensures that output segments have corresponding input segments was not considered

however. Insertion of sounds in Gen is consequently also neglected.

5 FOMA IMPLEMENTATION 23

define Syllable [SOnset SNucleus SCoda]/WB;

The transducer InsertSyll that maps the input to every possible syllabi�cation, in which each

vowel provides the nucleus of one syllable, has three steps. First, the nuclei are marked up, second,

syllable boundaries are inserted, and third, [SB WB] sequences are ruled out, as these candidates

have the same syllabi�cation as candidates with [WB SB] sequences.

define InsertSyll [

DeletedSeg* V @-> lNuc ... rNuc || [.#.|\Del] _ # Insert nucleus markers

.o.

Syllable -> ... SB || _ Syllable # Insert syllable boundaries

.o.

~$[SB WB] # Word boundary correction

];

TheGen function. Gen is then the composition of the transducer for deletion and the transducer

for syllabi�cation. It is furthermore ensured that the input contains neither stars, which are used

as violation markers (see section 2.3.2), nor markup symbols introduced by Gen.

define markup [Del | Syll];

define Gen0 [~$star .o. ~$markup .o. DeleteSeg .o. InsertSyll];

Gerdemann (2009a) describes a series of tests to check whether Gen0 is well-formed. They are

given in appendix B, and all yield a positive result for Gen0. For illustration of Gen, consider the

input /ty#va#/ (tu vas �you go�). The composition {ty#va#} .o. Gen0 yields the following 18

candidates14 from which [t(y)#.v(a)#] is the correct one:

t(y)##, t(y)#v#, t(y)#v.(a)#, t(y)#.(a)#, t(y)#.v(a)#, t#(a)#, t##, t#v(a)#, t#v#,

(y)##, (y)#v#, (y)#v.(a)#, (y)#.(a)#, (y)#.v(a)#, #(a)#, ##, #v(a)#, #v#

5.2 The Constraints

The constraints in the implementation all have the same format Z -> ... star || L _ R , where

Z is a regular expression that describes the violation. The rule transducer inserts the violation

marker star after every violation Z that occurs in the speci�ed context. The left (L) and right (R)

contexts are optional.

The syllable economy and maximization constraints have a straight forward implementation.

Every syllable boundary counts as a violation of SE.Max(X) is violated by a segment X preceded

by the deletion marker. The violation patterns are not restricted by context. Max(C),Max(V)

and Max(Schwa) are de�ned using the function MAX(X).

define SE [SB -> ... star];

define MAX(X) [[Del X] -> ... star];

14For readability, application of the phonetic module is assumed.

5 FOMA IMPLEMENTATION 24

The NoCoda constraint is violated if a coda is occupied by one or more consonants. Deleted

segments and word boundaries that also happen to be in the coda have to be ignored. A coda in

the implementation at hand is de�ned as having the right parenthesis of the nucleus at its left, and

a syllable boundary or the end of the string at its right. With the basic de�nitions given above and

the end-of-string symbol provided by Foma, these delimiters are de�ned as left and right contexts.

define NoCoda [[C+/DeletedSeg]/WB -> ... star || rNuc _ [SB | .#.]];

An empty onset is counted as a violation of Onset. The Foma implementation of this constraint

is therefore a special case of the general format. The violation pattern is the empty string, and

it does not have to be referenced on the right-hand side of the replacement. Deleted segments

and word boundaries that might occupy the onset are accounted for in the context. An onset is

generally delimited in our implementation by a syllable boundary or the beginning of the string on

the left, and by the left parenthesis of the nucleus on the right.

define Onset [[..] -> star || [SB | .#.] DeletedSeg*/WB _ lNuc];

Implementing the *ComplexOnset and *ComplexCoda hierarchy is more involved as every

possible and impossible onset and coda has to be described. The hierarchies furthermore vary

among speakers. In the implementation, admissible clusters are explicitely de�ned, and also used

to describe non-admissible onsets and codas. The constraints in the groups *ComplOnsetn and

*ComplCodan are not explicitely spelled out, but generalized in order to implement them as one

constraint per group. This strategy might over-generalize a bit since, other than the Obli onsets,

no exceptions in the general patterns are de�ned. To have a perfect description, more work is

needed here.

Admissible onsets are de�ned as Obli clusters, and two-consonant and three-consonant clusters

that end in a glide or start with /s/. Other clusters that have rising sonority are sequences of

an obstruent and a liquid that are not Obli, and an obstruent followed by a nasal. The set

ExOnset comprises onsets that are only exceptionally accepted by some speakers (in fast and

informal speech).

define OBLI [[[Obstruent & ~[s | z | S | Z]] Liquid] & ~[tl | dl]];

define CGOnset [Con Glide];

define sCOnset [s [[Obstruent-s] | Nasal]];

define CCGOnset [Obstruent Liquid Glide];

define sCCOnset [s [Obstruent-s] Liquid];

define notOBLI [Obstruent Liquid] & ~OBLI;

define ObNOnset [Obstruent Nasal];

define ExOnset [{lp}];

With the above given onset de�nitions, six *ComplexOnset constraints are de�ned that corre-

spond to the six *ComplOnsetn groups in section 4.1. The all have the form

define MComplOnsetN [[X/DeletedSeg]/WB -> ... star || [SB | .#.] _ lNuc];

5 FOMA IMPLEMENTATION 25

with N and X having the following values:

N X

1 [[C^4 C*] | [C^3 & ~[sCCOnset | CCGOnset]]]

2 [C^2 & ~[ExOnset | ObNOnset | notOBLI | sCOnset | CGOnset | OBLI]]

3 [notOBLI | ObNOnset | ExOnset]

4 sCCOnset

5 sCOnset

6 [CCGOnset | CGOnset | OBLI]

A similiar strategy is adopted for the *ComplexCoda constraints. They are generalized in

three constraints, that correspond to the three *ComplCodan groups, which have the following

format:

define MComplCodaN [Y -> ... star || rNuc _ [SB | .#.]];

Deleted segments and word boundaries cannot simply be ignored as in MComplOnsetN, as word-�nal

codas are in fact often complex in French. They should not violate the *ComplexCoda constraints.

When describing the violation patterns Y, the clusters at word's end have to be carefully left out

for this reason.

N Y

1 [[[[C C C+]/DeletedSeg]/WB] & ~[C C C+ WB]]

2 [[[C C]/DeletedSeg]/WB] & ~[C C WB] & ~CCCoda

3 CCCoda

CCCoda is the set of two-consonant codas that are widely accepted if a speaker admits complex codas.

The �rst consonant typically is a liquid or /s/. Here again, there is room for �ner descriptions of

codas.

define CCCoda [[[Liquid [Obstruent | Nasal | Liquid]] |

[s [Obstruent-s]]]/DeletedSeg]/WB;

Gerdemann (2009a) gives a test that can be used to check whether a constraint is well-formed.

It makes sure that any string is accepted as input, and that all the constraint transducer does is

to insert stars into the input. All the constraints given in this sections yield a positive result when

applying ConstraintWellFormed to them.

define ConstraintWellFormed(C)

and(equal(C1, Σ*), _isidentity(~$star .o. C .o. [star -> 0]));

5.3 Finding optimal candidates

The strategy for �nding optimal candidates as presented in Gerdemann (2009a) is applying one

constraint C to Gen yielding starred candidates. They are �optimized� by one of the opt functions,

which means that the optimal candidates with respect to the constraint are returned (without

stars). The FSA representing them is used as Gen to the next lower-ranked constraint, and the

5 FOMA IMPLEMENTATION 26

template given below is applied for each constraint following the order of the hierarchy H. In this

way, a series of more and more restrictive Gens is de�ned successively. To determine how many

permutations are needed in order to �nd the optimal candidates (i.e. which opt function to use),

isOptimized, as given in section 2.3.2, is applied.

define CStarred [ThisGen .o. C]2;

define NextGen opt0(CStarred);

define NextGenIsOptimized isOptimized([NextGen .o. C]2);

As presented in the above given code, ThisGen and NextGen are �nite-state automata, not

transducers. They represent FSTs, however, since, throughout the implementation, markup and

violation symbols are always distinguished from input symbols. The FSAs for Gen can therefore

be retransformed into FSTs as given in the function Unflatten(X). Furthermore, the original Gen0

(section 5.1) can also be turned into an FSA that represents an FST since the well-formedness tests

in appendix B succeed. Gerdemann (2009a) describes that the �nalGen (or any intermediateGen)

can be applied to input phrases with the help of Unflatten(X). ApplyGen de�nes this function.

The motivation for using automata instead of transducers is e�ciency as minimization algorithms

can always be applied to FSAs as Gerdemann (2009a) states. They are furthermore closed under

intersection and complementation in contrast to FSTs.

define Unflatten(X) [[markup | star] -> ε]−1 .o. X;

define Gen Gen02; # FSA

define ApplyGen(Lex, G) [Lex .o. Unflatten(G)]2; # Lex: input; G: Gen as FSA

If the constraints are applied one after the other as given above, this implements a strictly

ranked hierarchy. However, as we have seen in section 4.1, in linguistic applications this is not

always the case, and the constraints often do not have an obvious order with respect to each

other. Nevertheless, for implementation purposes, such a strict ranking has to be assumed. The

schwa/zero alternations are therefore implemented with the following hierarchy that corresponds

to what is given in section 4.1:

1. Max(C)

2. Max(V)

3. *ComplOnset1

4. *ComplCoda1

5. *ComplOnset2

SE border

6. *ComplCoda2

7. *ComplOnset3

8. *ComplCoda3

9. *ComplOnset4

10. *ComplOnset5

11. NoCoda

12. Onset

13. *ComplOnset6

14. Max(Schwa)

SE's variable ranking within this hierarchy is delimited to the top by *ComplOnset2. As pointed

out before, many speakers might also require *ComplOnset3 and/or *ComplCoda2 to dominate

SE.

Picking up Tranel's examples from section 4.2.1, the implementation at hand reproduces the the-

oretical results. Ranking SE lower than *ComplOnset5, ApplyGen([{l×#pano#}|{s×#pano#}],

5 FOMA IMPLEMENTATION 27

Gen7), with Gen7 being the �nal transducer, yields l(×).p(a).n(o) and s(×).p(a).n(o).15 With

all rankings that include *ComplOnset3 � SE� *ComplOnset5, the result is l(×).p(a).n(o)

and sp(a).n(o), while SE � *ComplOnset3 yields lp(a).n(o) and sp(a).n(o).

If SE is placed such that it is dominated by NoCoda, ApplyGen([{da#l×#pano#}], Gen7)

preserves schwa (d(a).l(×).p(a).n(o)). In contrast, all rankings that incorporate SE�NoCoda

yield d(a)l.p(a).n(o).

Concerning complex codas, if *ComplCoda2 � SE � *ComplCoda3, then syr#d×#pErson#

is mapped to s(y)rd.p(E)r.s(o)n, while the schwa in Zak#l×#sutjE# is not deleted (Z(a).kl(×).

s(u).tj(E)). When ranking SE lower than *ComplCoda3, the schwa in both phrases is retained

(s(y)r.d(×).p(E)r.s(o)n, Z(a).kl(×).s(u).tj(E)). It is deleted in both, when SE is ranked

higher than *ComplCoda2 (s(y)rd.p(E)r.s(o)n, Z(a)kl.s(u).tj(E)).

As a side e�ect, the �nal transducer Gen7 can also be used for syllable segmentation, no matter

whether the input contains a schwa or not.

5.4 Implementation di�culties

Unfortunately, the generation of syllabi�ed output does not work exactly as described above. When

putting together Gen with a series of constraints, the network grows so large in size that Foma

fails to handle it and runs out of memory. This typically happens when applying the opt1 function.

When decomposing opt1 into individual parts and applying them one after the other, one observes

that it is the extraction of the lower language after having added a star, changed the markup and

permuted the stars that causes Foma to crash. This happens for instance with the Max(Schwa)

constraint when SE is ranked directly before it. The network from which the lower-language

automaton should be extracted has a size of 6.4 MB, about 11 200 states and 421 000 arcs. As a

comparison, the application of opt1 to SE before works �ne; the transducer from which the lower

side is taken has a size of 5.8 MB, about 10 000 states and 378 800 arcs. Similiar (or even worse)

results are observed when running the same implementation with XFST to make sure that the error

is not due to the Foma system.

As a consequence, in order to obtain the results given in section 5.3, Gen is �rst applied to a toy

lexicon, i.e. a set of selected example phrases, which obviously yields considerably smaller networks

that typically shrink in size with every constraint application. Having a �nite toy lexicon, however,

means that the transducer has to be recompiled every time a new phrase is added, which defeats

the purpose of using �nite-state methods. Usually, the generation of output from a given input is

very e�cient as the transducer is already compiled. The implementation of schwa/zero alternations

in the framework of OT therefore has a rather illustrative character, showing the strengths and

weaknesses in Tranel's (1999, 2000) analysis.

However, as already mentioned, the implementation involves a constraint-based syllabi�er that

compiles with the general Gen if all constraints are left out that are not necessarily needed for

syllabi�cation. After having tested it on a large-scale corpus, it can be used for syllable segmenta-

tion according to the analysis in Dell (1995).

15Appliciation of the (phonetic) module, which e�ects the deletions and deletes the word boundaries, is assumed for

better readability.

6 CONCLUSION 28

The implementation furthermore has the conceptual weakness that a complete, strict hierarchy

of constraints is required to compute optimal candidates. As can be seen in section 4.1, establishing

such a hierarchy is not always straight forward, sometimes not even possible, and requires a lot of

data. The *ComplOnset and *ComplCoda hierarchies for example have been assumed to be

interspersed with each other in a certain way for the implementation. The assumptions match the

examples given by Tranel (1999, 2000), but also �x language characteristics that are unattested

in the literature. For instance, if the speaker that exhibits the implemented hierarchy permits

/lp/-onsets (SE � *ComplOnset3), he automatically also accepts /rd/-codas (*ComplOnset3

� *ComplCoda3).

6 Conclusion

The paper at hand has formalized and implemented Tranel's (1999, 2000) OT approach to schwa/zero

alternations in French. The syllable constraints given in his approach to illustrate the variable

ranking of the central SE constraint have been completed. They now provide an OT model for

syllable segmentation in French. Besides Onset and NoCoda, the hierarchies *ComplOnsetn

and *ComplCodan have been suggested, and they have been shown to correctly syllabify critical

input phrases.

The implementation outlined in section 5 has served as a veri�cation and debugging tool for the

syllable constraints and the various rankings of SE given in Tranel (1999, 2000). As Gen produces

all conceivable outputs for a given input, it is almost impossible to evaluate them at hand, and a

computational device comes in handy.

By theoretical analyses and application of the implemented transducer to example phrases,

Tranel's (1999, 2000) approach has been shown to correctly predict phrases containing one alter-

nating schwa. Ranking SE low, preserves the schwa, while the higher SE moves, the more likely

it is that schwa is deleted, even in a complex consonantal environment. It has furthermore been

found that Tranel (1999, 2000) fails to generally account for phrases that contain more than one

alternating schwa. In the forms that are optimal according to his approach, either all schwas surface

or the deletions of schwa are maximized. Intermediate results are not predicted.

Additionally, using the Foma �nite-state calculus, the paper has demonstrated how Gen can

be represented as a transducer and how syllable constraints can be formulated as transducers that

insert violation markers into input strings. The Matching Approach has been chosen for evaluating

the candidates. It has been found that the networks that are created generally grow very large in

size, and that a toy lexicon is therefore needed. When seeing the implementation as a debugging

tool to verify linguistic analyses, this requirement, however, is not a big shortcoming.

Directions for future work

The presented work can be improved and extended in two main directions. From the linguistic

point of view, Tranel's (1999, 2000) OT approach to schwa/zero alternations should be augmented

such that it correctly predicts all output forms for phrases with multiple schwas. The presented

syllable constraints could be made more accurate, so that they also account for exceptions in the

6 CONCLUSION 29

general sonority patterns. Above all, segmentation into syllables should be tested on a large scale.

The constraints that were primarily written to account for schwa/zero alternations could then be

taken as an OT approach to syllabi�cation of French. The corresponding implementation could be

used as a syllabi�er.

On the implementation side, more research should be done on why and when the networks grow

so large that the Foma system is not able to handle them anymore. If they can be kept smaller, the

implemented transducer could serve as an important component in a text-to-speech system that

considers style and speech rate. One could furthermore try to �nd a way to evaluate candidates

for unranked constraints.

REFERENCES 30

References

Dell, F. (1973). Les règles et les sons. Herman, Paris.

Dell, F. (1995). Consonant clusters and phonological syllables in french. Lingua 95, pages 5�26.

Ellison, M. T. (1994). Phonological Derivations in Optimality Theory. In Proceedings of the 15th

International Conference on Computational Linguistics, pages 1007�1013, Kyoto.

Féry, C. (2001). Markedness, Faithfulness, Vowel Quality and Syllable Structure in French. In

Linguistics in Potsdam No. 15.

Gerdemann, D. (2009a). FinnOTMatching.fom. unpublished Matching Approach implementation

of Karttunen's Finnish Prosody example in Foma.

Gerdemann, D. (2009b). Mix and Match Replacement Rules. to be published.

Gerdemann, D. and van Noord, G. (2000). Approximation and Exactness in Finite State Optimality

Theory. In Proceedings of COLING/Sigphon Workshop on Finite State Phonology.

Goslin, J. and Frauenfelder, U. H. (2000). A Comparison of Theoretical and Human Syllabi�cation.

Language and Speech, 44(4):409�36.

Hulden, M. (2009). Foma: a �nite-state compiler and library. In Proceedings of the EACL 2009

Demonstrations Session, pages 29�32, Athens, Greece. Association for Computational Linguis-

tics.

Jetchev, G. I. (1997). Ghost Vowels and Syllabi�cation. Evidence from Bulgarian and French. PhD

thesis, Scuola Normale Superiore di Pisa.

Johnson, C. D. (1972). Formal Aspects of Phonological Descriptions. Mouton.

Kager, R. (1999). Optimality Theroy. Cambridge University Press.

Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. Computational

Linguistics, 20(3):331�79.

Karttunen, L. (1995). The Replace Operator. In 33th Annual Meeting of the Association for

Computational Linguistics.

Karttunen, L. (1996). Directed Replacement. In 34th Annual Meeting of the Association for

Computational Linguistics.

Karttunen, L. (1998). The Proper Treatment of Optimality in Computational Phonology. In

Finite-State Methods in Natural Language Processing, pages 1�12. Ankara.

Karttunen, L. (2003). Finite-State Technology. In Mitkov, R., editor, The Oxford Handbook of

Computational Linguistics, pages 339�57. Oxford University Press.

REFERENCES 31

Kleene, S. C. (1956). Representation of Events in Nerve Nets and Finite Automata. In Shannon,

C. E. and McCarty, J., editors, Automata Studies, pages 3�42. Princeton University Press.

McCarthy, J. J. (2002). A Thematic Guide to Optimality Theory. Cambridge University Press.

Prince, A. and Smolensky, P. (1993). Optimality Theory: Constraint interaction in generative

grammar. Rutgers Optimality Archive. ROA version 8/2002.

Roche, E. and Schabes, Y. (1997). Introduction. In Roche, E. and Schabes, Y., editors, Finite-State

Language Processing, pages 1�93. MIT Press.

Tranel, B. (1987a). French schwa and nonlinear phonology. Linguistics, 25:845�66.

Tranel, B. (1987b). The Sounds of French. Cambridge University Press.

Tranel, B. (1999). Optional Schwa Deletion: On Syllable Economy in French. In Authier, J.-M.,

Bullock, B. E., and Reed, L. A., editors, Formal Perspectives on Romances Linguistics, volume

185 of Amsterdam Studies in the Theory and History of Linguistic Science, pages 271�88. John

Benjamins Publishing Company.

Tranel, B. (2000). Aspects de la phonologie du français et la théorie de l'optimalité. In Langue

française, volume 126, pages 39�72.

Tranel, B. and Gobbo, F. D. (2002). Local Conjunction in Italian and French Phonology. In

Wiltshire, C. R. and Camps, J., editors, Romance Phonology and Variation, volume 217 of Ams-

terdam Studies in the Theory and History of Linguistic Science, pages 191�218. John Benjamins

Publishing Company.

32

Appendices

A Foma Operators

Operator Function

[] grouping parentheses
() optionality
{} concatinate symbols
\ term negation
+ Kleene plus
* Kleene star
^n n-ary concatinations
1 .u upper language
2 .l lower language
−1 .i inverse
¬ ∼ complement
$ containment operator
/ ignore operator
| ∪ union
& ∩ intersection
- set minus
.P. priority union
.o. ◦ composition
.O. lenient composition
-> replacement
(->) optional replacement
@-> directed replacement: left-to-right, longest match
_ replacement context speci�er
|| replacement direction speci�er: simultaneous
[..] single-epsilon control in replacements
... markup replacement control
Σ ? `any' symbol
ε 0 [] epsilon symbol
∅ empty language symbol
.#. word boundary in replacement restrictions
_isfunctional test if FST is functional
_isidentity test if FST represents identity relations only

B WELL-FORMEDNESS TESTS FOR GEN 33

B Well-formedness tests for Gen

Basic de�nitions.

define true ε;

define false ∅;

define and(B1, B2) [B1 B2];

define or(B1, B2) [B1 | B2];

define not(B) [~B & true];

define empty(L) not([L:true]2);

define subset(A1,A2) empty(A1 & ~A2);

define equal(A1, A2) and(subset(A1,A2), subset(A2,A1));

Tests. Gen0 is the Gen transducer that should be tested.

define MarkupDoesNotIncludeStar empty(markup & star);

define NoMarkupOrStarInInput empty(Gen01 & $[markup | star]);

define NoStarInOutput empty(Gen02 & $star);

define ContainsIdentity _isidentity(Gen0 .o. markup -> ε);

define MarkupOnlyInserted _isfunctional(Gen0−1);

Taken from Gerdemann (2009a).

C SYLLABIFICATION EXAMPLES 34

C Syllabi�cation examples

Input Syllabi�ed output

Estryktœr# (E)s.tr(y)k.t(œ)r#
atla# (a)t.l(a)#
abstrE# (a)b.str(E)#
atla#abstrE# (a)t.l(a)#.(a)b.str(E)#
lŒ#ZardE# l(Œ)#.Z(a)r.d(E)#
yn#animasjo# (y).n#(a).n(i).m(a).sj(o)#
pano# p(a).n(o)#
arOdi# (a).r(O).d(i)#
ObsEn# (O)b.s(E)n#
akro# (a).kr(o)#
mErkrœdi# m(E)r.kr(œ).d(i)#
la#trwa# l(a)#.trw(a)#
da#lŒ#retablisma# d(a)#.l(Œ)#.r(e).t(a).bl(i)s.m(a)#
da#lœr#etablisma# d(a)#.l(œ).r#(e).t(a).bl(i)s.m(a)#
Ekstaz# (E)k.st(a)z#
astral# (a)s.tr(a)l#
anovrjE# (a).n(o).vrj(E)#

D FOMA CODA 35

D Foma Coda

To include the code, some utf8 symbols had to be replaced because of encoding problems. O, A, H,

Z and N have originally been O, A, 4, Z and ñ.

french.fom

Miriam Käshammer

Lexicon

define TestWords [

{da#l×#pano#}|

{la#trwa#}|

{l×#pano#}|

{s×#pano#}|

{avEk#l×#pano#}|

{syr#d×#pErson#}|

{pa#d×#skrypyl#}|

{la#vEst#d×#pol#}|

{pa#d×#s×#kreta#}|

{mErkr÷di#}|

{abstrE#}|

{kwartz#} |

{Estrykt÷r#}|

{atla#}|

{atla#abstrE#}|

{l×#ZardE#}|

{yn#animasjo#}|

{pano#}|

{arOdi#}|

{akro#}|

{il#t×#l×#d×mad#}|

{la#tEr#s×#vo#bjE#}|

{pur#s×#pENe#}|

{pur#t×#pENe#}|

{Avi#d×#t×#l×#d×mAde#} |

{Z×#n×#sE#pa#}|

{Z×#noz#pa#}|

{sogr×ny#} |

{da#l×#retablisma#}|

{da#l÷r#etablisma#}|

{yn#pat#d×#r×nar#}|

{yn#kø#d×#r×nar#}|

{Zak#s×ku#la#braS#}|

D FOMA CODA 36

{Zak#l×#sutjE#}|

{El#t×#d×mad#}|

{ObsEn#} |

{Ekstaz#} |

{astral#} |

{anovrjE#}|

{abstrE#}

];

###

######################### Basic definitions #######################

###

Vowels

define Schwa ×;

define stableSchwa ÷;

define BackV [u | o | O | A];

define FrontV [i | y | e | ø | %E | a | stableSchwa];

define VWithoutSchwa [BackV | FrontV];

define V [VWithoutSchwa | Schwa];

Consonants

define Glide [H | w | j];

define Obstruent [p | b | f | v | k | g | t | d | s | z | S | Z];

define Liquid [l | r];

define Nasal [m | n | N | ­];

define Con [Obstruent | Liquid | Nasal];

define C [Glide | Con];

define Seg [V | C];

define WB %#; # Word Boundary

Syllable Markers

define rNuc %); # Nucleus

define lNuc %(; # Nucleus

define SB %.; # Syllable boundary

define Nuc [rNuc | lNuc];

define Syll [Nuc | SB];

Edit Markers

define Del %%D; # Deletion marker

D FOMA CODA 37

define Edit [Del];

define DeletedSeg [Del Seg];

define markup [Edit | Syll];

Violation marker

define star %*;

###

############################## GEN ################################

###

Insert deletion markers

define DeleteSeg [

[..] (->) Del || _ Seg

];

Insert syllable markers

define SOnset [[DeletedSeg]* C]*;

define SCoda [DeletedSeg* C]*;

define SNucleus [lNuc DeletedSeg* V rNuc];

define Syllable [SOnset SNucleus SCoda]/WB;

define InsertSyll [

DeletedSeg* V @-> lNuc ... rNuc || [.#.|\Del] _

.o.

Syllable -> ... SB || _ Syllable

.o.

~$[SB WB]

];

define Gen0 [

[Seg | WB]*

.o.

~$markup

.o.

~$star

.o.

DeleteSeg

D FOMA CODA 38

.o.

InsertSyll

];

############################ TESTING ##############################

tests taken from Gerdemann, FinnOTMatching.fom

define true E;

define false ~$true; #empty language

define and(B1, B2) B1 B2;

define or(B1, B2) B1 | B2;

define not(B) ~B & true;

define empty(L) not([L:true]2);

define subset(A1,A2) empty(A1 & ~ A2);

define equal(A1, A2) and(subset(A1,A2), subset(A2,A1));

DG: If all these tests succeed, then the FST Gen0 is well-formed and it

is safe to represent Gen as the FSA Gen02. The last test,

MarkupOnlyInserted, says essentially that Gen0 should not (even

optionally) turn some input symbols into markup symbols.

define MarkupDoesNotIncludeStar empty(markup & star);

define NoMarkupOrStarInInput empty(Gen01 & $[markup | star]);

define NoStarInOutput empty(Gen02 & $star);

define ContainsIdentity _isidentity(Gen0 .o. markup -> E);

define MarkupOnlyInserted _isfunctional(Gen0-1);

DG: Represent Gen0 as an FSA. Since input symbols and markup symbols are

clearly distinguished, this FSA can represent an FST.

define Gen Gen02;

DG: We turn the FSA Gen back into an FST by removing markup symbols

from the input side.

define Unflatten(X) [[markup | star] -> E]-1 .o. X;

DG: ApplyGen allows the FSA Gen to be run as if it were an FST.

define ApplyGen(Lex, G) [Lex .o. Unflatten(G)]2;

###

D FOMA CODA 39

####################### Matching Approach #########################

###

taken from Gerdemann, FinnOTMatching.fom

define Pardon(X) [X .o. star -> 0]2;

define ChangeMarkup(X) [X .o. [? | E:markup | markup:E]*]2;

define AddStar(X) [X .o. [[?* E:star]+ ?*]]2;

DG: It might be better to combine ChangeMarkup and AddStar so as to

avoid the intermediate step of taking the lower language:

define msig ? | E:markup | markup:E;

define AddStarAndChangeMarkup(X)

[X .o. [[msig* E:star]+ msig*]]2;

define ksig \markup | markup:E;

define AddStarAndDeleteMarkup(X)

[X .o. [[ksig* E:star]+ ksig*]]2;

DG: Approximate permution of stars

define permuteStarLeft [E:star [?-star]* star:E];

define permuteStarRight [star:E [?-star]* E:star];

define permuteStars [?* [permuteStarLeft | permuteStarRight]]* ?*;

define permute0(X) X;

define permute1(X) [X .o. permuteStars]2;

define permute2(X) [X .o. permuteStars .o. permuteStars]2;

define permute3(X) [X .o. permuteStars .o. permuteStars .o. permuteStars]2;

define permute4(X)

[X .o. permuteStars .o. permuteStars .o. permuteStars .o. permuteStars]2;

define opt0(Starred)

Pardon(Starred - AddStarAndChangeMarkup(Starred));

define opt1(Starred)

Pardon(Starred - permute1(AddStarAndChangeMarkup(Starred)));

define opt2(Starred)

Pardon(Starred - permute2(AddStarAndChangeMarkup(Starred)));

define opt3(Starred)

Pardon(Starred - permute3(AddStarAndChangeMarkup(Starred)));

define opt4(Starred)

Pardon(Starred - permute4(AddStarAndChangeMarkup(Starred)));

D FOMA CODA 40

DG: The exactness test as described in Gerdemann & van Noord (2000)

define isOptimized(Starred) _isfunctional([Unflatten(Starred) .o. [\star -> E]]);

DG: Note that a star-constraint should be a transducer that accepts any

string as input and does nothing more than to add stars to this

input. One might also require that the input to the constraint not

contain stars, but this is not necessary since each Gen is

star-free in its output.

define ConstraintWellFormed(C)

and(equal(C1, ?*), _isidentity(~$star .o. C .o. [star -> E]));

##

###################### Phonetic Module #############################

##

This Module effects the deletions and removes the word boundaries.

It could also remove the syllable markers or determine the

realization of schwa.

define RemoveDel [DeletedSeg -> 0];

define RemoveWB [WB -> 0];

define PhoneticModule [

RemoveDel

.o.

RemoveWB

];

new ApplyGen

define ApplyGenMod(Lex,Gen,Mod) [ApplyGen(Lex,Gen) .o. Mod].l;

##

######################### Constraints ##############################

##

Input segments must have output correspondents

define MAX(X) [

D FOMA CODA 41

[Del X] -> ... star

];

MaxC: Input Consonants must have output correspondents

define MaxC MAX(C);

define MaxCWellFormed ConstraintWellFormed(MaxC);

MaxV: Input Vowels except Schwa must have output correspondents

define MaxV MAX(VWithoutSchwa);

define MaxVWellFormed ConstraintWellFormed(MaxV);

MaxSchwa: Input Schwas must have output correspondents

define MaxSchwa MAX(Schwa);

define MaxSchwaWellFormed ConstraintWellFormed(MaxSchwa);

Onset: Syllables must have an onset.

define Onset [..] -> star || [SB | .#.] DeletedSeg*/WB _ lNuc;

define OnsetWellFormed ConstraintWellFormed(Onset);

SE: Syllable Economy (less is better)

define SE [

SB -> ... star

];

define SEWellFormed ConstraintWellFormed(SE);

MComplexOnset: Onsets have rising sonority.

define sCCOnset [s [Obstruent-s] Liquid];

define CCGOnset [Obstruent Liquid Glide];

define sCOnset [s [[Obstruent-s] | Nasal]];

define CGOnset [Con Glide];

define ObNOnset [Obstruent Nasal];

define ExOnset [{lp}];

OBLI: Sequence of obstruent and liquid (Dell 1995, p.7)

define OBLI [[[Obstruent & ~[s | z | S | Z]] Liquid] & ~[{tl}|{dl}]];

define notOBLI [Obstruent Liquid] & ~OBLI;

define MComplOnset1 [

[[[C^4 C*] | [C^3 & ~[sCCOnset|CCGOnset]]]/DeletedSeg]/WB

D FOMA CODA 42

-> ... star || [SB|.#.] _ lNuc

];

define MComplOnset2 [

[[C^2 & ~[ExOnset|ObNOnset|notOBLI|sCOnset|CGOnset|OBLI]]/DeletedSeg]/WB

-> ... star || [SB|.#.] _ lNuc

];

define MComplOnset3 [

[[notOBLI|ObNOnset|ExOnset]/DeletedSeg]/WB

-> ... star || [SB|.#.] _ lNuc

];

define MComplOnset4 [

[sCCOnset/DeletedSeg]/WB

-> ... star || [SB|.#.] _ lNuc

];

define MComplOnset5 [

[sCOnset/DeletedSeg]/WB

-> ... star || [SB|.#.] _ lNuc

];

define MComplOnset6 [

[[CCGOnset|CGOnset|OBLI]/DeletedSeg]/WB

-> ... star || [SB|.#.] _ lNuc

];

define MComplOnset1WellFormed ConstraintWellFormed(MComplOnset1);

define MComplOnset2WellFormed ConstraintWellFormed(MComplOnset2);

define MComplOnset3WellFormed ConstraintWellFormed(MComplOnset3);

define MComplOnset4WellFormed ConstraintWellFormed(MComplOnset4);

define MComplOnset5WellFormed ConstraintWellFormed(MComplOnset5);

define MComplOnset6WellFormed ConstraintWellFormed(MComplOnset6);

NoCoda: Syllables must not have a coda.

define NoCoda [

[C+/DeletedSeg]/WB -> ... star || rNuc _ [SB | .#.]

];

define NoCodaWellFormed ConstraintWellFormed(NoCoda);

MComplexCoda

define MCCCCoda [

[[[[C C C+]/DeletedSeg]/WB] & ~[C C C+ WB]]

D FOMA CODA 43

];

define CCCoda [

[[[Liquid [Obstruent|Nasal|Liquid]] | [s [Obstruent-s]]]/DeletedSeg]/WB

];

define MCCCoda [

[[[C C]/DeletedSeg]/WB] & ~CCCoda & ~[C C WB]

];

define MComplCoda1 [

MCCCCoda -> ... star || rNuc _ [SB | .#.]

];

define MComplCoda2 [

MCCCoda -> ... star || rNuc _ [SB | .#.]

];

define MComplCoda3 [

CCCoda -> ... star || rNuc _ [SB | .#.]

];

define MComplCoda1WellFormed ConstraintWellFormed(MComplCoda1);

define MComplCoda2WellFormed ConstraintWellFormed(MComplCoda2);

define MComplCoda3WellFormed ConstraintWellFormed(MComplCoda3);

###

###

frenchRankings.fom

Miriam Käshammer

Import the definitions.

source french.fom

##

########################## Hierarchy ############################

##

Use Gen for the general implementation, and

GEN for the toy lexicon.

define GEN ApplyGen(TestWords, Gen);

echo

D FOMA CODA 44

echo Gen1: MaxC

define MaxCStarred [GEN .o. MaxC]2;

define Gen1 opt0(MaxCStarred);

define Gen1IsOptimized isOptimized([Gen1 .o. MaxC]2);

define Gen1WasAlreadyOptimized isOptimized(MaxCStarred);

regex ApplyGen(TestWords, Gen1);

#print words

echo

echo Gen2: MaxV

define MaxVStarred [Gen1 .o. MaxV]2;

define Gen2 opt0(MaxVStarred);

define Gen2IsOptimized isOptimized([Gen2 .o. MaxV]2);

define Gen2WasAlreadyOptimized isOptimized(MaxVStarred);

regex ApplyGen(TestWords, Gen2);

#print words

echo

echo Gen41: MComplexOnset

define MComplOnset1Starred [Gen2 .o. MComplOnset1]2;

define Gen41 opt0(MComplOnset1Starred);

define Gen41IsOptimized isOptimized([Gen41 .o. MComplOnset1]2);

define Gen41WasAlreadyOptimized isOptimized(MComplOnset1Starred);

regex ApplyGen(TestWords, Gen41);

#print words

echo

echo Gen61: MComplexCoda

define MComplCoda1Starred [Gen41 .o. MComplCoda1]2;

define Gen61 opt0(MComplCoda1Starred);

define Gen61IsOptimized isOptimized([Gen61 .o. MComplCoda1]2);

define Gen61WasAlreadyOptimized isOptimized(MComplCoda1Starred);

regex ApplyGen(TestWords, Gen61);

#print words

echo

echo Gen42: MComplexOnset

define MComplOnset2Starred [Gen61 .o. MComplOnset2]2;

define Gen42 opt0(MComplOnset2Starred);

define Gen42IsOptimized isOptimized([Gen42 .o. MComplOnset2]2);

define Gen42WasAlreadyOptimized isOptimized(MComplOnset2Starred);

regex ApplyGen(TestWords, Gen42);

D FOMA CODA 45

#print words

echo

echo Gen62: MComplexCoda

define MComplCoda2Starred [Gen42 .o. MComplCoda2]2;

define Gen62 opt0(MComplCoda2Starred);

define Gen62IsOptimized isOptimized([Gen62 .o. MComplCoda2]2);

define Gen62WasAlreadyOptimized isOptimized(MComplCoda2Starred);

regex ApplyGen(TestWords, Gen62);

#print words

######### ----------------- SE border----------------- ###############

############################### 1Gen7 ################################

echo

echo 1Gen7: SE >> Max(Schwa)

define 1MComplOnset3Starred [Gen62 .o. MComplOnset3]2;

define 1Gen43 opt0(1MComplOnset3Starred);

define 1Gen43IsOptimized isOptimized([1Gen43 .o. MComplOnset3]2);

define 1MComplCoda3Starred [1Gen43 .o. MComplCoda3]2;

define 1Gen63 opt0(1MComplCoda3Starred);

define 1Gen63IsOptimized isOptimized([1Gen63 .o. MComplCoda3]2);

define 1MComplOnset4Starred [1Gen63 .o. MComplOnset4]2;

define 1Gen44 opt0(1MComplOnset4Starred);

define 1Gen44IsOptimized isOptimized([1Gen44 .o. MComplOnset4]2);

define 1MComplOnset5Starred [1Gen44 .o. MComplOnset5]2;

define 1Gen45 opt0(1MComplOnset5Starred);

define 1Gen45IsOptimized isOptimized([1Gen45 .o. MComplOnset5]2);

define 1NoCodaStarred [1Gen45 .o. NoCoda]2;

define 1Gen5 opt0(1NoCodaStarred);

define 1Gen5IsOptimized isOptimized([1Gen5 .o. NoCoda]2);

define 1OnsetStarred [1Gen5 .o. Onset]2;

define 1Gen3 opt0(1OnsetStarred);

define 1Gen3IsOptimized isOptimized([1Gen3 .o. Onset]2);

D FOMA CODA 46

define 1MComplOnset6Starred [1Gen3 .o. MComplOnset6]2;

define 1Gen46 opt0(1MComplOnset6Starred);

define 1Gen46IsOptimized isOptimized([1Gen46 .o. MComplOnset6]2);

define 1SEStarred [1Gen46 .o. SE]2;

define 1Gen100 opt0(1SEStarred);

define 1Gen100IsOptimized isOptimized([1Gen100 .o. SE]2);

define 1MaxSchwaStarred [1Gen100 .o. MaxSchwa]2;

define 1Gen7 opt0(1MaxSchwaStarred);

define 1Gen7IsOptimized isOptimized([1Gen7 .o. MaxSchwa]2);

############################### 2Gen7 ################################

echo

echo 2Gen7: SE >> MComplOnset6

define 2MComplOnset3Starred [Gen62 .o. MComplOnset3]2;

define 2Gen43 opt0(2MComplOnset3Starred);

define 2Gen43IsOptimized isOptimized([2Gen43 .o. MComplOnset3]2);

define 2MComplCoda3Starred [2Gen43 .o. MComplCoda3]2;

define 2Gen63 opt0(2MComplCoda3Starred);

define 2Gen63IsOptimized isOptimized([2Gen63 .o. MComplCoda3]2);

define 2MComplOnset4Starred [2Gen63 .o. MComplOnset4]2;

define 2Gen44 opt0(2MComplOnset4Starred);

define 2Gen44IsOptimized isOptimized([2Gen44 .o. MComplOnset4]2);

define 2MComplOnset5Starred [2Gen44 .o. MComplOnset5]2;

define 2Gen45 opt0(2MComplOnset5Starred);

define 2Gen45IsOptimized isOptimized([2Gen45 .o. MComplOnset5]2);

define 2NoCodaStarred [2Gen45 .o. NoCoda]2;

define 2Gen5 opt0(2NoCodaStarred);

define 2Gen5IsOptimized isOptimized([2Gen5 .o. NoCoda]2);

define 2OnsetStarred [2Gen5 .o. Onset]2;

define 2Gen3 opt0(2OnsetStarred);

define 2Gen3IsOptimized isOptimized([2Gen3 .o. Onset]2);

D FOMA CODA 47

define 2SEStarred [2Gen3 .o. SE]2;

define 2Gen100 opt0(2SEStarred);

define 2Gen100IsOptimized isOptimized([2Gen100 .o. SE]2);

define 2MComplOnset6Starred [2Gen100 .o. MComplOnset6]2;

define 2Gen46 opt0(2MComplOnset6Starred);

define 2Gen46IsOptimized isOptimized([2Gen46 .o. MComplOnset6]2);

define 2MaxSchwaStarred [2Gen46 .o. MaxSchwa]2;

define 2Gen7 opt0(2MaxSchwaStarred);

define 2Gen7IsOptimized isOptimized([2Gen7 .o. MaxSchwa]2);

###

###

3Gen7 - 9Gen7 are defined following the pattern above.

###

Some tests

echo

echo lowest SE ranking (1)

regex ApplyGenMod(

{Estrykt÷r#}|

{atla#abstrE#}|

{l×#ZardE#}|

{yn#animasjo#}|

{yn#pat#d×#r×nar#}|

{yn#kø#d×#r×nar#}|

{Avi#d×#t×#l×#d×mAde#}|

{da#l×#pano#}|

{l×#pano#}|

{s×#pano#}, 1Gen7, PhoneticModule);

print words

echo

echo SE ranking (2)

regex ApplyGenMod(

{yn#pat#d×#r×nar#}|

D FOMA CODA 48

{yn#kø#d×#r×nar#}|

{Avi#d×#t×#l×#d×mAde#}|

{da#l×#pano#}|

{l×#pano#}|

{s×#pano#}, 2Gen7, PhoneticModule);

print words

