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Abstract

This paper proves the NP-hardness of three ex-
tensions of tree-adjoining grammar (TAG): FO-
TAG [2], RSN-MCTAG [6] and TT-MCTAG [7].
The complexities of these extensions have all
been presented as open problems in the liter-
ature. The extensions have been proposed to
model scrambling and free word order phenom-
ena in languages such as German, Korean and
Japanese. It is shown that one of them also gen-
erates the MIX language. Finally, some polyno-
mial time fragments are defined.

1 Introduction

Natural language has been shown to contain construc-
tions which can not be adequately represented using
context-free grammar (CFG), such as cross-serial de-
pendencies. While first shown to exist in Swiss Ger-
man [12], they can also be found in Tagalog [8]. Several
formalisms have been introduced that provide more ex-
pressive power than CFG while staying computation-
ally tractable, i.e. while retaining polynomial recogni-
tion. One of these formalisms is tree-adjoining gram-
mar (TAG). Some knowledge of TAG is assumed in
this paper. Consult [5] otherwise for a nice introduc-
tion. Informally, a TAG consists of finite sets of ter-
minals and nonterminals and finite sets of initial and
auxiliary trees. Larger trees are derived by substitut-
ing |-marked frontier nodes with trees or by adjoining
trees (that have a root node and a #-marked frontier
node with the same nonterminal) to interior nodes.
The language of a TAG is the set of strings that are in
the yield of trees that can be derived from an initial
tree.

[2] showed that TAG does not have the expressive
power necessary to capture scrambling and free word
order phenomena in languages such as German, Ko-
rean and Japanese. Here’s an example from Korean:

(1) jatongcha-lul keu-ka surihakess-tako
car.DEF.ACC PRO.3SG.NOM repair.INF

yakosokhaessta
promise.FIN

"He promises to repair the car.’

In Korean, adjuncts and arguments scramble. In
this case, an argument of the lower clause even appears
in the upper clause. The structure is thus discontinu-
ous. Scrambling over clause boundaries is sometimes
referred to as long-distance scrambling. Such long-
distance scrambling is beyond the expressive power
of TAG, but even scrambling phenomena within the
clause receive rather unelegant analyses in TAG.

ID/LP grammar was proposed by [11] for scram-
bling and free word order within the clause. In ID/LP
grammar, the productions of CFG are split into imme-
diate dominance (ID) and linear precedence (LP). For
instance, the production S — «af is split into the (un-
ordered) ID S — «f and the LP o < 3. The LPs can
be relaxed or removed. In other words, free word or-
der and scrambling do not complicate grammars, but
simplify them. ID/LP grammar still only generates
context-free languages, but in fact the universal recog-
nition problem becomes NP-hard. This was proven for
the fragment of ID/LP grammar with no LPs (UCFQG)
in [1] by an interesting application of the vertex cover
problem; this problem is also used here to establish
the NP-hardness of FO-TAG, RSN-MCTAG and TT-
MCTAG.

The vertex cover problem involves finding the small-
est set V' of vertices in a graph D = (V, E) such that
every edge has at least one endpoint in the set. For-
mally, V' CV : V{a,b} € E:a € V' Vbe V' The
problem is thus an optimization problem, formulated
as a decision problem:

INSTANCE: A graph D = (V,E) and a
positive integer k.
QUESTION: Is there a vertex cover of size

k or less for G?

Say k = 2,V = {a,b,¢,d},E = {{a,c),{b,c),
(b,d), (c,d)}, for instance. One way to obtain a ver-
tex cover is to go through the edges and underline one
endpoint of each edge. If you can do that and only
underline two vertex symbols, a vertex cover has been
found. Since |V| = 4, this is equivalent to leaving two
vertex symbols untouched. Consequently, the vertex
cover problem for this specific instance is encoded by
this UCFQG, where § is a bookkeeping dummy symbol:



S — p1p2p3p4UU5555
o — afe

p2 — ble

ps — bld

ps — cld

U —  aaaalbbbb|ccecldddd
0 — alblcld

pi captures the i¢th edge in E. The input string
w = aaaabbbbcecedddd. One derivation tree in our
example will have the form:

[[aaaa]y[bbbb]u[c] b, ¢)[cl(a,e) [l (c,a)lc]
Aopldsidsldsls.

Generally, the first production has as many p;’s as
there are edges in the graph, |V| — k many U’s and
|E| x |[V| = |E| — |E| x (V| — k) many d’s, i.e. the
length of the string minus the number of edges and
the extension of |[V|—k many U’s. The p; productions
are simple, U extends into |E| many a’s or b’s and
so on, and 0 extends into all possible vertices. Since
the grammar and input string can be constructed in
polynomial time from an underlying vertex cover prob-
lem (k,V, E), universal recognition of UCFG must be
at least as hard as solving the vertex cover problem.
Since the vertex cover problem is NP-hard [4], the uni-
versal recognition problem for totally unordered type
2 grammars is therefore NP-hard. It is easy to see that
it is also in NP. Simply guess a derivation, linear in the
size of the string, and evaluate it in polynomial time.

Several extensions, as already mentioned, have been
proposed for long-distance scrambling. See [6] for a
partial survey. Most proposals in one way or an-
other relax the notion of immediate dominance be-
tween mothers and daughters in trees. Note that im-
mediate dominance is already relaxed in TAG, since
new trees can be adjoined to daughter nodes.

FO-TAG is probably the simplest proposal, as it is
very similar to ID/LP grammar. In variants of mul-
ticomponent TAG (MCTAG), the relaxation of im-
mediate dominance is obtained by splitting auxiliary
trees into smaller trees and dominance (not immedi-
ate dominance) links. The grammar then consists of
sets of trees rather than just elementary trees, except
for the initial trees. It is usually a restriction that
every auxiliary tree in a set must be applied to the
derived tree, in a single derivation step. In the ab-
sence of any other restrictions, the fixed recognition
problem of (even lexicalized) MCTAG can be shown
to be NP-hard [10, 3|. [3] proves the NP-hardness of
the fixed recognition problem of a particular grammar
that solves all instances of the three-partition problem
by accepting only some input.

Several variants of MCTAG have appeared in the
last years, and their complexities have been presented
as open problems. In this paper, our concern is with
FO-TAG [2], RSN-MCTAG [6] and TT-MCTAG [7]. It
seems that none of these extensions of TAG are able
to easily reconstruct the three-partition problem, but
they all have the power to solve the vertex cover prob-
lem. Or more accurately, for every instance of the
vertex cover problem, there is a polynomial (and lin-
ear) translation into a grammar of one of these kinds
and a string such that the string is only recognized

by the grammar iff the source problem instance has a
solution. Since the vertex cover problem is known to
be NP-complete, the universal recognition problems of
the three extensions are thus NP-hard. It is trivial to
show that the extensions are also NP-complete.

2 FO-TAG

Free order TAG (FO-TAG) was introduced in [2]. The
definition is presented in Definition 2.1.

Definition 2.1. G is a free order tree-adjoining
grammar iff G = (N,T,1,A,S) such that G' =
(N,T,I,A,S) is a tree-adjoining grammar [5], except
that initial and auxiliary trees are now tuples of un-
ordered trees and LPs of the form o < [ where
o, €N.

The language of a FO-TAG is, as in the case of TAG,
the set of strings that are in the yield of the trees
that can be derived from an S-rooted initial tree by
adjunction and substitution.

Example 2.2. FO-TAG does not seem to generate
the MIX language, but the totally unordered extension
of it does, i.e. if a language L is generated by a FO-
TAG, the language generated by its totally unordered
extension is the set of all permutations of strings in
L. See [13] for the notion of total unordering. The
MIX language is conjectured not to be mildly context
sensitive. It consists of all strings in {abc}*; that is,
every string that consists of the same number of a’s,
b’s and ¢’s. To see this, consider the auxiliary tree:

S

/\

a b ¢ S.

This generates the language whose permutations is
the MIX language with an appropriate initial tree to
begin the derivation and an appropriate auxiliary tree
to end it.

For our NP-hardness proof, it is shown how to re-
construct the vertex cover problem in FO-TAG. The
theorem is a trivial consequence of the result in [1],
since every UCFG is also a FO-TAG.

Theorem 2.3. The recognition problem of FO-TAG
ts NP-hard.

Proof sketch 2.4. For each problem instance D,k we
construct a FO-TAG G = (N,T,I, A, S) and a string
o such that o is in the language of G iff D,k has a
solution. First o is defined as the concatenation of
|E| many v;’s for each v; € V. So for the instance
k=2V ={a,b,c,d},E = {{a,c), (bc),(b,d),{c,d)},
for example, a possible string is aaaabbbbcecedddd. 1t
is then defined that the tuple of the elementary tree

S

UlVI=k P1---PIE| om

with m = |E| x |V| — |E| — |E| x ([V| — k). The
S-initial tree has |V| —k many U’s as daughters. Con-
sequently, there are only k vertices left to cover the
graph. It should not be difficult to see how the proof
proceeds; it is, in all respects, analogous to the proof
for UCFG.



3 RSN-MCTAG

Restricted multicomponent TAG with shared nodes
(RSN-MCTAG) was introduced in [6]. Its formal def-
inition is presented in Definition 3.1.

Definition 3.1. G is a restricted multicomponent
tree-adjoining grammar with shared nodes iff G =
(N, T,1,A, A, S) such that G' = (N,T,I,A,S) is a
tree-adjoining grammar [5], and where A C 2794,

The next step is to define a relation on the derivation
tree Rg for node-sharing. A derivation tree is a tuple
D = (Trees, Drvs), where Trees C (I U A), and Drvs C
Trees x Trees x GornAddrs, where GornAddrs is the set
of Gorn addresses. R is defined:

Rs = {(n1,n2) | ni,ne € Trees, ny
is immediately dominated by nq
or there are t1,...,t; € Trees
such that ¢
is immediately dominated by
ny,ne =t and for all 7,
1 < 7 < (k - 1) : <ti,ti+1,pl> with lfi
being an auxiliary tree with root
note address p'}

The language of a RSN-MCTAG is the set of strings
that are in the yield of the trees that can be de-
rived from an S-rooted initial tree by simultaneous ad-
junction and substitution of all elements of sets, with
derivation tree D = (Trees, Drvs) such that for every
{B1,...,0n} € A, B; € Trees, and there is a v such
that (; is immediately dominated by (is the daughter
of) v in the derived tree or linked to v by a chain of
root adjunctions. In other words, Rs(vy, ;). In addi-
tion, at least one 3; must be immediately dominated
by ~ in the derivation tree. Due to the simultaneity
constraint, no two 3;, 3; can dominate each other .

Example 3.2. Neither RSN-MCTAG or SN-MCTAG
[6], that is, RSN-MCTAG without the immediate dom-
inance restriction on set application, generate the MIX
language. This is possible, however, if we give up the
constraint that no two 3;, 3; can dominate each other.
To see this, consider the set:

S S S
o

PN
a/\S* © b S o ¢ §*

and the initial tree:

S

€

It should be relatively easy to see that this generates
the MIX language if the auxiliary trees in a set can
dominate each other.

For our NP-hardness proof, it is shown how to re-
construct the vertex cover problem in RSN-MCTAG:

Theorem 3.3. The recognition problem of RSN-
MCTAG is NP-hard.

Proof sketch 3.4. For each problem instance D,k we
construct a RSN-MCTAG G = (N,T,1,A, A,S) and
a string o such that o is in the language of G iff D, k
has a solution. First ¢ is defined as the concatenation
of |E| many v;’s for each v; € V. So for the instance
k=2 V ={a,b,e,d}, E = {{a,c),(b,c), (b,d),{c,d)},
for example, a possible string is aaaabbbbcecedddd. 1t
is then defined that N = {D,U, S,e1,...eg,0}. For

each e,, = (n;,n;) € E, singleton sets are introduced:

AT

For each v; =V, singleton sets are introduced:

L

The set in Figure 1 is then introduced.
Finally, the S-initial tree is added:

S

S|IEIxIVI

The set in Figure 1 needs to saturate |V| — k many
U’s. Consequently, there are only k vertices left to
cover the graph. Consequently, only the trees that
relate edge nonterminal symbols e; with the terminals
that are not used to build U’s can be build. In our
example, this will be those with terminals ¢,d. The
O-trees are just there for technical reasons.

The reconstruction shows that the recognition prob-
lem of RSN-MCTAG is NP-hard.

The proof also applies to SN-MCTAG [6], of course.
Moreover the proof is independent on constraints such
as tree-locality and set-locality, since the elementary
trees of each set all apply, simultaneously, to the same
tree and, therefore, the same set.

4 TT-MCTAG

Multicomponent TAG with tree tuples (TT-MCTAG)
is introduced in [7]. Its formal definition is presented
in Definition 4.1.

Definition 4.1. G is a multicomponent tree-adjoining
grammar with tree tuples iff G = (N,T,I,A,7,S)
such that G’ = (N, T, I, A, S) is a tree-adjoining gram-
mar [5], and where 7 C (I U A) x 24 such that for
each (v,{f1,...,0n}) € T the frontier nodes of the
destination tree « include at least one terminal sym-
bol.

The next step is to define a relation on the deriva-
tion tree Ry for node-sharing. This is just as in
RSN-MCTAG. A derivation tree is a tuple D =
(Trees, Drvs), where Trees C (I U A), and Drvs C
Trees x Trees x GornAddrs, where GornAddrs is the set
of Gorn addresses.

The language of a TT-MCTAG is the set of strings

that are in the yield of the trees that can be derived



P1 PIE|

|V|—Ek g m

Fig. 1: A set in the RSN-MCTAG reconstruction of the vertez cover problem. m = |E|x|V|—|E|—|E|x(|V|-k).

from an S-rooted initial tree by adjunction and substi-
tution with derivation tree D = (Trees, Drvs) such that
for every (v,{B1,...,0n}) € T, B; € Trees, and either
(i is substituted for a frontier node in v, or adjoined
to an interior node of v or Rs(7v, ;).

Example 4.2. TT-MCTAG also generates the MIX
language. To see this, consider the tree tuples:

S /S\ S
(s s s p)

S* ’ a S* LG S*

o

s ( S S
(5 {h A

S S
<A A\

¢ S* ) a S

and the tree tuple:

(1)

It should be relatively easy to see that this generates
the MIX language. The saturation requirement in TT-
MCTAG ensures that you use up all the trees in the
tuples, whenever destination trees are introduced.

For our NP-hardness proof, it is shown how to re-
construct the vertex cover problem in TT-MCTAG:

Theorem 4.3. The recognition problem of TT-
MCTAG is NP-hard.

Proof sketch 4.4. For each problem instance D,k we
construct a TT-MCTAG G = (N,T,I,A,7,S) and
a string o such that o is in the language of G iff
D,k has a solution. First o is defined as the con-
catenation of |E| many wv;’s for each v; € V, pre-
fixed by the symbol {. So for the instance k =
2,V = {a,b,e.d}, E = {{a,c), (b,c), (b,d), {c,d)}, for
example, a possible string is faaaabbbbcceedddd. Tt is
then defined that N = {U, S,e1,...¢|g|,0}. For each

em = (ni,n;) € E, tree tuples are introduced:

E€m €m
< ‘ 7 ®> and < ‘ , @>
n; U

For each v; =V, tree tuples are introduced:

U |B|-1
SR

) . *
v v, U

Finally, the tree tuple in Figure 2 is introduced.

The S-initial tree needs to saturate |V| — k many
U’s. Consequently, there are only k vertices left to
cover the graph. Consequently, only the edge-tuples
— that is, the ones with destination trees with interior
nodes p; with the terminals that are not used to
build U’s can be build. In our example, this will be
those with terminals ¢,d. The J-trees are just there
for technical reasons.

The reconstruction shows that the recognition prob-
lem of TT-MCTAG is NP-hard. It is, as already said,
trivial to show NP-inclusion, since derived trees are
clearly polynomial in the length of the input. Conse-
quently, it is possible to guess a model and evaluate it
in polynomial time.

5 Polynomial time fragments

This section defines some fragments of the above ex-
tensions whose recognition problems can be solved in
polynomial time. Our first fragment is FO-TAG(k).
An FO-TAG is a FO-TAG(k) iff a discontinuous tu-
ple, that is, a tuple in which the linearization of the
tree is not fully specified by the LPs, has a yield of at
most k£ terminals.

Theorem 5.1.
TAG(k) is in P.

The recognition problem of FO-

Proof sketch 5.2. Consider the simpler case of
UCFG(k), defined in an analogous fashion. Our first
step is to define a chart. See [13] for a similar construc-
tion. If you have a UCFG G = (N, T, P, S) and some
string wy ...wy. Construct G, = (N, T, P, {15:})
such that

T, =

{wi, .o wn}

and, recursively

(@) (wi € Tyand A — w; € P) = (;A; €
N, and ;A; — w; € P,)

(b) (iBj 41 Ck, ceome1 Xom S N, and A —
(B/C...X1) = (Am € No A Ay —
{iBjj+1Cks - - ym—1Xm € Po)

The upper bound on |F,| is roughly:

0<i 0<j

DUNIx(n—i)x > (IN"7 x (n—i)x (n—3j))

i<n j<(n—i)

To see this, note that there are spans to assign
one of |N| nonterminals, and that each nonterminal in
the chart with span of length n — i may correspond to,
roughly,

n2+n
2
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Fig. 2: The S-initial tree in the TT-MCTAG reconstruction of the vertex cover problem. m = |E| x |V| — |E| —

[E] < (

V| —k).

0=j L,
STOUNTTED s (i) x (n = (i + 5)))

i<(n=1)
productions, since you can partition the span in

(n — i) x (n — (i + j)) and assign N™~(+)) many

combinations of nonterminals for each partitioning.
In UCFG(k), this number is much lower, namely

0<i 0<j o
STUNIx (n—d) x> (NFTEFD) (ki) x (k= (i+ )
i<k j<(k—i)
k<i
+ 3 TUN x (n =)
i<n

if it is assumed that any rule that spans more than
k positions is binary. The bound implies parsing in
O(n?). This reflects that a k bound on yield means
a k' bound on arity, and if there is such a bound, the
underlying CFG can be constructed in O(k'!) time. In
FO-TAG(k), the same effect is seen on charts. See [14]
for a chart-based parsing algorithm for ordinary TAG.
It is easy to see that since charts are polynomial in the
length of the string, so is the time complexity of the
recognition problem.

Similarly, a & bound on the number of nodes in un-
ordered elementary trees will allow you to generate the
underlying TAG in O((k — 1)!). [6] defines a polyno-
mial fragment of RSN-MCTAG (RSN-MCTAG(k)) by
adding a restriction that roughly means you can only
have k elementary trees between elements of tree sets.

A similar constraint can be imposed on TT-
MCTAG. Or we can impose a k-gap degree constraint,
as in non-projective dependency parsing [9]. In fact,
the two constraints are intimately related. If there is
a k bound on the elementary trees that can occur be-
tween elements of tree sets, there is also a k' bound,
linear in k, on the gap degree.

FO-TAG(k) is weakly equivalent to TAG and FO-
TAG, but the k-constraint is not harmless, from a lin-
guistic point of view, since intra-clausal unordering is
relevant for arbitrary yields. The second proposal, to
restrict the number of nodes in unordered elementary
trees, seems more realistic; most grammars have rea-
sonable bounds on the number of nodes. The same
applies to RSN-MCTAG (k). [9] shows that a low gap
degree is realistic for a number of languages.

6 Conclusion

It was shown that FO-TAG [2], RSN-MCTAG [6]
and TT-MCTAG [7], three extensions of tree-adjoining
grammar that are suited for analyzing scrambling and
free word order phenomena in languages such as Ger-
man, Korean and Japanese, have NP-hard universal
recognition problems. All three extensions are also

NP-complete, but only one of them, TT-MCTAG,
generates the MIX language. Some polynomial time
fragments were defined. The NP-hardness proofs im-
ply that tree-local MCTAG is NP-hard, while weakly
equivalent to TAG. Consequently, any translation from
tree-local MCTAG into TAG is exponential. This mir-
rors the relation between ID/LP grammars and CFG.
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