
The 
omplexity of linguisti
ally motivated extensions oftree-adjoining grammarAnders SøgaardUniversity of Copenhagenanders�
st.dk Timm Li
hteUniversity of Tübingentimm.li
hte�uni-tuebingen.deWolfgang MaierUniversity of Tübingenwo.maier�uni-tuebingen.deAbstra
tThis paper proves the NP-hardness of three ex-tensions of tree-adjoining grammar (TAG): FO-TAG [2℄, RSN-MCTAG [6℄ and TT-MCTAG [7℄.The 
omplexities of these extensions have allbeen presented as open problems in the liter-ature. The extensions have been proposed tomodel s
rambling and free word order phenom-ena in languages su
h as German, Korean andJapanese. It is shown that one of them also gen-erates the MIX language. Finally, some polyno-mial time fragments are de�ned.1 Introdu
tionNatural language has been shown to 
ontain 
onstru
-tions whi
h 
an not be adequately represented using
ontext-free grammar (CFG), su
h as 
ross-serial de-penden
ies. While �rst shown to exist in Swiss Ger-man [12℄, they 
an also be found in Tagalog [8℄. Severalformalisms have been introdu
ed that provide more ex-pressive power than CFG while staying 
omputation-ally tra
table, i.e. while retaining polynomial re
ogni-tion. One of these formalisms is tree-adjoining gram-mar (TAG). Some knowledge of TAG is assumed inthis paper. Consult [5℄ otherwise for a ni
e introdu
-tion. Informally, a TAG 
onsists of �nite sets of ter-minals and nonterminals and �nite sets of initial andauxiliary trees. Larger trees are derived by substitut-ing ↓-marked frontier nodes with trees or by adjoiningtrees (that have a root node and a ∗-marked frontiernode with the same nonterminal) to interior nodes.The language of a TAG is the set of strings that are inthe yield of trees that 
an be derived from an initialtree.[2℄ showed that TAG does not have the expressivepower ne
essary to 
apture s
rambling and free wordorder phenomena in languages su
h as German, Ko-rean and Japanese. Here's an example from Korean:(1) jatong
ha-lul
ar.def.a

 keu-kapro.3sg.nom surihakess-takorepair.infyakosokhaesstapromise.fin'He promises to repair the 
ar.'

In Korean, adjun
ts and arguments s
ramble. Inthis 
ase, an argument of the lower 
lause even appearsin the upper 
lause. The stru
ture is thus dis
ontinu-ous. S
rambling over 
lause boundaries is sometimesreferred to as long-distan
e s
rambling. Su
h long-distan
e s
rambling is beyond the expressive powerof TAG, but even s
rambling phenomena within the
lause re
eive rather unelegant analyses in TAG.ID/LP grammar was proposed by [11℄ for s
ram-bling and free word order within the 
lause. In ID/LPgrammar, the produ
tions of CFG are split into imme-diate dominan
e (ID) and linear pre
eden
e (LP). Forinstan
e, the produ
tion S → αβ is split into the (un-ordered) ID S → αβ and the LP α ≺ β. The LPs 
anbe relaxed or removed. In other words, free word or-der and s
rambling do not 
ompli
ate grammars, butsimplify them. ID/LP grammar still only generates
ontext-free languages, but in fa
t the universal re
og-nition problem be
omes NP-hard. This was proven forthe fragment of ID/LP grammar with no LPs (UCFG)in [1℄ by an interesting appli
ation of the vertex 
overproblem; this problem is also used here to establishthe NP-hardness of FO-TAG, RSN-MCTAG and TT-MCTAG.The vertex 
over problem involves �nding the small-est set V ′ of verti
es in a graph D = 〈V, E〉 su
h thatevery edge has at least one endpoint in the set. For-mally, V ′ ⊆ V : ∀{a, b} ∈ E : a ∈ V ′ ∨ b ∈ V ′. Theproblem is thus an optimization problem, formulatedas a de
ision problem:INSTANCE: A graph D = 〈V, E〉 and apositive integer k.QUESTION: Is there a vertex 
over of size
k or less for G?Say k = 2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉,

〈b, d〉, 〈c, d〉}, for instan
e. One way to obtain a ver-tex 
over is to go through the edges and underline oneendpoint of ea
h edge. If you 
an do that and onlyunderline two vertex symbols, a vertex 
over has beenfound. Sin
e |V | = 4, this is equivalent to leaving twovertex symbols untou
hed. Consequently, the vertex
over problem for this spe
i�
 instan
e is en
oded bythis UCFG, where δ is a bookkeeping dummy symbol:



S → ρ1ρ2ρ3ρ4UUδδδδ
ρ1 → a|c
ρ2 → b|c
ρ3 → b|d
ρ4 → c|d
U → aaaa|bbbb|cccc|dddd
δ → a|b|c|d

ρi 
aptures the ith edge in E. The input string
ω = aaaabbbbccccdddd. One derivation tree in ourexample will have the form:

[[aaaa]U [bbbb]U [c](b,c)[c](a,c)[c](c,d)[c]δ
[d](b,d)[d]δ[d]δ[d]δ]S .Generally, the �rst produ
tion has as many ρi's asthere are edges in the graph, |V | − k many U 's and

|E| × |V | − |E| − |E| × (|V | − k) many δ's, i.e. thelength of the string minus the number of edges andthe extension of |V |−k many U 's. The ρi produ
tionsare simple, U extends into |E| many a's or b's andso on, and δ extends into all possible verti
es. Sin
ethe grammar and input string 
an be 
onstru
ted inpolynomial time from an underlying vertex 
over prob-lem 〈k, V, E〉, universal re
ognition of UCFG must beat least as hard as solving the vertex 
over problem.Sin
e the vertex 
over problem is NP-hard [4℄, the uni-versal re
ognition problem for totally unordered type2 grammars is therefore NP-hard. It is easy to see thatit is also in NP. Simply guess a derivation, linear in thesize of the string, and evaluate it in polynomial time.Several extensions, as already mentioned, have beenproposed for long-distan
e s
rambling. See [6℄ for apartial survey. Most proposals in one way or an-other relax the notion of immediate dominan
e be-tween mothers and daughters in trees. Note that im-mediate dominan
e is already relaxed in TAG, sin
enew trees 
an be adjoined to daughter nodes.FO-TAG is probably the simplest proposal, as it isvery similar to ID/LP grammar. In variants of mul-ti
omponent TAG (MCTAG), the relaxation of im-mediate dominan
e is obtained by splitting auxiliarytrees into smaller trees and dominan
e (not immedi-ate dominan
e) links. The grammar then 
onsists ofsets of trees rather than just elementary trees, ex
eptfor the initial trees. It is usually a restri
tion thatevery auxiliary tree in a set must be applied to thederived tree, in a single derivation step. In the ab-sen
e of any other restri
tions, the �xed re
ognitionproblem of (even lexi
alized) MCTAG 
an be shownto be NP-hard [10, 3℄. [3℄ proves the NP-hardness ofthe �xed re
ognition problem of a parti
ular grammarthat solves all instan
es of the three-partition problemby a

epting only some input.Several variants of MCTAG have appeared in thelast years, and their 
omplexities have been presentedas open problems. In this paper, our 
on
ern is withFO-TAG [2℄, RSN-MCTAG [6℄ and TT-MCTAG [7℄. Itseems that none of these extensions of TAG are ableto easily re
onstru
t the three-partition problem, butthey all have the power to solve the vertex 
over prob-lem. Or more a

urately, for every instan
e of thevertex 
over problem, there is a polynomial (and lin-ear) translation into a grammar of one of these kindsand a string su
h that the string is only re
ognized

by the grammar i� the sour
e problem instan
e has asolution. Sin
e the vertex 
over problem is known tobe NP-
omplete, the universal re
ognition problems ofthe three extensions are thus NP-hard. It is trivial toshow that the extensions are also NP-
omplete.2 FO-TAGFree order TAG (FO-TAG) was introdu
ed in [2℄. Thede�nition is presented in De�nition 2.1.De�nition 2.1. G is a free order tree-adjoininggrammar i� G = 〈N, T, I, A, S〉 su
h that G′ =
〈N, T, I, A, S〉 is a tree-adjoining grammar [5℄, ex
eptthat initial and auxiliary trees are now tuples of un-ordered trees and LPs of the form α ≺ β where
α, β ∈ N .The language of a FO-TAG is, as in the 
ase of TAG,the set of strings that are in the yield of the treesthat 
an be derived from an S-rooted initial tree byadjun
tion and substitution.Example 2.2. FO-TAG does not seem to generatethe MIX language, but the totally unordered extensionof it does, i.e. if a language L is generated by a FO-TAG, the language generated by its totally unorderedextension is the set of all permutations of strings in
L. See [13℄ for the notion of total unordering. TheMIX language is 
onje
tured not to be mildly 
ontextsensitive. It 
onsists of all strings in {abc}∗; that is,every string that 
onsists of the same number of a's,
b's and c's. To see this, 
onsider the auxiliary tree:Sa b 
 S∗This generates the language whose permutations isthe MIX language with an appropriate initial tree tobegin the derivation and an appropriate auxiliary treeto end it.For our NP-hardness proof, it is shown how to re-
onstru
t the vertex 
over problem in FO-TAG. Thetheorem is a trivial 
onsequen
e of the result in [1℄,sin
e every UCFG is also a FO-TAG.Theorem 2.3. The re
ognition problem of FO-TAGis NP-hard.Proof sket
h 2.4. For ea
h problem instan
e D, k we
onstru
t a FO-TAG G = 〈N, T, I, A, S〉 and a string
σ su
h that σ is in the language of G i� D, k has asolution. First σ is de�ned as the 
on
atenation of
|E| many vi's for ea
h vi ∈ V . So for the instan
e
k = 2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉, 〈b, d〉, 〈c, d〉},for example, a possible string is aaaabbbbccccdddd. Itis then de�ned that the tuple of the elementary treeSU|V |−k ρ1 . . . ρ|E| δmwith m = |E| × |V | − |E| − |E| × (|V | − k). The
S-initial tree has |V |−k many U 's as daughters. Con-sequently, there are only k verti
es left to 
over thegraph. It should not be di�
ult to see how the proofpro
eeds; it is, in all respe
ts, analogous to the prooffor UCFG.



3 RSN-MCTAGRestri
ted multi
omponent TAG with shared nodes(RSN-MCTAG) was introdu
ed in [6℄. Its formal def-inition is presented in De�nition 3.1.De�nition 3.1. G is a restri
ted multi
omponenttree-adjoining grammar with shared nodes i� G =
〈N, T, I, A,A, S〉 su
h that G′ = 〈N, T, I, A, S〉 is atree-adjoining grammar [5℄, and where A ⊆ 2I∪A.The next step is to de�ne a relation on the derivationtree Rs for node-sharing. A derivation tree is a tuple
D = 〈Trees, Drvs〉, where Trees ⊆ (I ∪ A), and Drvs ⊆
Trees × Trees × GornAddrs, where GornAddrs is the setof Gorn addresses. Rs is de�ned:

Rs = {〈n1, n2〉 | n1, n2 ∈ Trees, n2is immediately dominated by n1or there are t1, . . . , tk ∈ Treessu
h that t1is immediately dominated by
n1, n2 = tk and for all i,
1 ≤ i ≤ (k − 1) : 〈ti, ti+1, p

′〉 with tibeing an auxiliary tree with rootnote address p′}The language of a RSN-MCTAG is the set of stringsthat are in the yield of the trees that 
an be de-rived from an S-rooted initial tree by simultaneous ad-jun
tion and substitution of all elements of sets, withderivation tree D = 〈Trees, Drvs〉 su
h that for every
{β1, . . . , βn} ∈ A, βi ∈ Trees, and there is a γ su
hthat βi is immediately dominated by (is the daughterof) γ in the derived tree or linked to γ by a 
hain ofroot adjun
tions. In other words, Rs(γ, βi). In addi-tion, at least one βj must be immediately dominatedby γ in the derivation tree. Due to the simultaneity
onstraint, no two βi, βj 
an dominate ea
h other .Example 3.2. Neither RSN-MCTAG or SN-MCTAG[6℄, that is, RSN-MCTAG without the immediate dom-inan
e restri
tion on set appli
ation, generate the MIXlanguage. This is possible, however, if we give up the
onstraint that no two βi, βj 
an dominate ea
h other.To see this, 
onsider the set:







Sa S* , Sb S* , S
 S* 



and the initial tree: S
ǫIt should be relatively easy to see that this generatesthe MIX language if the auxiliary trees in a set 
andominate ea
h other.For our NP-hardness proof, it is shown how to re-
onstru
t the vertex 
over problem in RSN-MCTAG:Theorem 3.3. The re
ognition problem of RSN-MCTAG is NP-hard.

Proof sket
h 3.4. For ea
h problem instan
e D, k we
onstru
t a RSN-MCTAG G = 〈N, T, I, A,A, S〉 anda string σ su
h that σ is in the language of G i� D, khas a solution. First σ is de�ned as the 
on
atenationof |E| many vi's for ea
h vi ∈ V . So for the instan
e
k = 2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉, 〈b, d〉, 〈c, d〉},for example, a possible string is aaaabbbbccccdddd. Itis then de�ned that N = {D, U, S, e1, . . . e|E|, δ}. Forea
h em = 〈ni, nj〉 ∈ E, singleton sets are introdu
ed:

{

em

ni

} and {

em

nj

}For ea
h vi = V , singleton sets are introdu
ed:
{ U

v
|E|
i

}The set in Figure 1 is then introdu
ed.Finally, the S-initial tree is added:SS↓|E|×|V |The set in Figure 1 needs to saturate |V | − k many
U 's. Consequently, there are only k verti
es left to
over the graph. Consequently, only the trees thatrelate edge nonterminal symbols ei with the terminalsthat are not used to build U 's 
an be build. In ourexample, this will be those with terminals c, d. The
δ-trees are just there for te
hni
al reasons.The re
onstru
tion shows that the re
ognition prob-lem of RSN-MCTAG is NP-hard.The proof also applies to SN-MCTAG [6℄, of 
ourse.Moreover the proof is independent on 
onstraints su
has tree-lo
ality and set-lo
ality, sin
e the elementarytrees of ea
h set all apply, simultaneously, to the sametree and, therefore, the same set.4 TT-MCTAGMulti
omponent TAG with tree tuples (TT-MCTAG)is introdu
ed in [7℄. Its formal de�nition is presentedin De�nition 4.1.De�nition 4.1. G is a multi
omponent tree-adjoininggrammar with tree tuples i� G = 〈N, T, I, A, T , S〉su
h that G′ = 〈N, T, I, A, S〉 is a tree-adjoining gram-mar [5℄, and where T ⊆ (I ∪ A) × 2A su
h that forea
h 〈γ, {β1, . . . , βn}〉 ∈ T the frontier nodes of thedestination tree γ in
lude at least one terminal sym-bol.The next step is to de�ne a relation on the deriva-tion tree Rs for node-sharing. This is just as inRSN-MCTAG. A derivation tree is a tuple D =
〈Trees, Drvs〉, where Trees ⊆ (I ∪ A), and Drvs ⊆
Trees × Trees × GornAddrs, where GornAddrs is the setof Gorn addresses.The language of a TT-MCTAG is the set of stringsthat are in the yield of the trees that 
an be derived













S
ρ1

,. . . S
ρ|E|

,





S
U





|V |−k

,





S
δ





m








Fig. 1: A set in the RSN-MCTAG re
onstru
tion of the vertex 
over problem. m = |E|×|V |−|E|−|E|×(|V |−k).from an S-rooted initial tree by adjun
tion and substi-tution with derivation tree D = 〈Trees, Drvs〉 su
h thatfor every 〈γ, {β1, . . . , βn}〉 ∈ T , βi ∈ Trees, and either
βi is substituted for a frontier node in γ, or adjoinedto an interior node of γ or Rs(γ, βi).Example 4.2. TT-MCTAG also generates the MIXlanguage. To see this, 
onsider the tree tuples:

〈 Sa S* , 





Sb S* , S
 S* 





〉

〈 Sb S* , 





Sa S* , S
 S* 





〉

〈 S
 S* , 





Sa S* , Sb S* 





〉and the tree tuple:
〈 S

ǫ
, ∅

〉It should be relatively easy to see that this generatesthe MIX language. The saturation requirement in TT-MCTAG ensures that you use up all the trees in thetuples, whenever destination trees are introdu
ed.For our NP-hardness proof, it is shown how to re-
onstru
t the vertex 
over problem in TT-MCTAG:Theorem 4.3. The re
ognition problem of TT-MCTAG is NP-hard.Proof sket
h 4.4. For ea
h problem instan
e D, k we
onstru
t a TT-MCTAG G = 〈N, T, I, A, T , S〉 anda string σ su
h that σ is in the language of G i�
D, k has a solution. First σ is de�ned as the 
on-
atenation of |E| many vi's for ea
h vi ∈ V , pre-�xed by the symbol †. So for the instan
e k =
2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉, 〈b, d〉, 〈c, d〉}, forexample, a possible string is †aaaabbbbccccdddd. It isthen de�ned that N = {U, S, e1, . . . e|E|, δ}. For ea
h
em = 〈ni, nj〉 ∈ E, tree tuples are introdu
ed:

〈

em

ni

, ∅

〉 and 〈

em

nj

, ∅

〉For ea
h vi = V , tree tuples are introdu
ed:
〈 U

vi

,















U
vi U∗





|E|−1










〉

Finally, the tree tuple in Figure 2 is introdu
ed.The S-initial tree needs to saturate |V | − k many
U 's. Consequently, there are only k verti
es left to
over the graph. Consequently, only the edge-tuples� that is, the ones with destination trees with interiornodes ρi � with the terminals that are not used tobuild U 's 
an be build. In our example, this will bethose with terminals c, d. The δ-trees are just therefor te
hni
al reasons.The re
onstru
tion shows that the re
ognition prob-lem of TT-MCTAG is NP-hard. It is, as already said,trivial to show NP-in
lusion, sin
e derived trees are
learly polynomial in the length of the input. Conse-quently, it is possible to guess a model and evaluate itin polynomial time.5 Polynomial time fragmentsThis se
tion de�nes some fragments of the above ex-tensions whose re
ognition problems 
an be solved inpolynomial time. Our �rst fragment is FO-TAG(k).An FO-TAG is a FO-TAG(k) i� a dis
ontinuous tu-ple, that is, a tuple in whi
h the linearization of thetree is not fully spe
i�ed by the LPs, has a yield of atmost k terminals.Theorem 5.1. The re
ognition problem of FO-TAG(k) is in P.Proof sket
h 5.2. Consider the simpler 
ase ofUCFG(k), de�ned in an analogous fashion. Our �rststep is to de�ne a 
hart. See [13℄ for a similar 
onstru
-tion. If you have a UCFG G = 〈N, T, P, S〉 and somestring ω1 . . . ωn. Constru
t Gω = 〈Nω, Tω, Pω , {1Sn}〉su
h that

Tω = {ω1, . . . , ωn}and, re
ursively(a) (ωi ∈ Tω and A → ωi ∈ P ) =⇒ (iAi ∈
Nω and iAi → ωi ∈ Pω)(b) (iBj ,j+1 Ck, . . . ,m−1 Xm ∈ Nω and A →
{B, C, . . . , X}) =⇒ (iAm ∈ Nω ∧ iAm →
{iBjj+1Ck, . . . ,m−1 Xm ∈ Pω)The upper bound on |Pω| is roughly:

0≤i
X

i<n

(|N | × (n − i) ×

0≤j
X

j<(n−i)

(|N |
n−j

× (n − i) × (n − j)))To see this, note that there are n2+n
2 spans to assignone of |N | nonterminals, and that ea
h nonterminal inthe 
hart with span of length n− i may 
orrespond to,roughly,



〈 S
†

,











S
ρ1 S∗ , . . .

S
ρ|E| S∗ ,





S
U S∗ 



|V |−k

,





S
δ S∗ 



m










〉

Fig. 2: The S-initial tree in the TT-MCTAG re
onstru
tion of the vertex 
over problem. m = |E|× |V |− |E|−
|E| × (|V | − k).

0≤j
X

j<(n−i)

(|N |
n−(i+j)

× (n − i) × (n − (i + j)))produ
tions, sin
e you 
an partition the span in
(n − i) × (n − (i + j)) and assign N (n−(i+j)) many
ombinations of nonterminals for ea
h partitioning.In UCFG(k), this number is mu
h lower, namely
0≤i
X

i<k

(|N | × (n − i) ×

0≤j
X

j<(k−i)

(|N |k−(i+j)) × (k − i) × (k − (i + j)))

+
k<i
X

i<n

(|N |3 × (n − i))if it is assumed that any rule that spans more than
k positions is binary. The bound implies parsing in
O(n3). This re�e
ts that a k bound on yield meansa k′ bound on arity, and if there is su
h a bound, theunderlying CFG 
an be 
onstru
ted in O(k′!) time. InFO-TAG(k), the same e�e
t is seen on 
harts. See [14℄for a 
hart-based parsing algorithm for ordinary TAG.It is easy to see that sin
e 
harts are polynomial in thelength of the string, so is the time 
omplexity of there
ognition problem.Similarly, a k bound on the number of nodes in un-ordered elementary trees will allow you to generate theunderlying TAG in O((k − 1)!). [6℄ de�nes a polyno-mial fragment of RSN-MCTAG (RSN-MCTAG(k)) byadding a restri
tion that roughly means you 
an onlyhave k elementary trees between elements of tree sets.A similar 
onstraint 
an be imposed on TT-MCTAG. Or we 
an impose a k-gap degree 
onstraint,as in non-proje
tive dependen
y parsing [9℄. In fa
t,the two 
onstraints are intimately related. If there isa k bound on the elementary trees that 
an o

ur be-tween elements of tree sets, there is also a k′ bound,linear in k, on the gap degree.FO-TAG(k) is weakly equivalent to TAG and FO-TAG, but the k-
onstraint is not harmless, from a lin-guisti
 point of view, sin
e intra-
lausal unordering isrelevant for arbitrary yields. The se
ond proposal, torestri
t the number of nodes in unordered elementarytrees, seems more realisti
; most grammars have rea-sonable bounds on the number of nodes. The sameapplies to RSN-MCTAG(k). [9℄ shows that a low gapdegree is realisti
 for a number of languages.6 Con
lusionIt was shown that FO-TAG [2℄, RSN-MCTAG [6℄and TT-MCTAG [7℄, three extensions of tree-adjoininggrammar that are suited for analyzing s
rambling andfree word order phenomena in languages su
h as Ger-man, Korean and Japanese, have NP-hard universalre
ognition problems. All three extensions are also

NP-
omplete, but only one of them, TT-MCTAG,generates the MIX language. Some polynomial timefragments were de�ned. The NP-hardness proofs im-ply that tree-lo
al MCTAG is NP-hard, while weaklyequivalent to TAG. Consequently, any translation fromtree-lo
al MCTAG into TAG is exponential. This mir-rors the relation between ID/LP grammars and CFG.Referen
es[1℄ E. Barton. The 
omputational di�
ulty of ID/LP parsing. InPro
eedings of the 23rd Annual Meeting of the Asso
iationfor Computational Linguisti
s, pages 76�81, Chi
ago, Illinois,1985.[2℄ T. Be
ker, A. K. Joshi, and O. Rambow. Long-distan
e s
ram-bling and tree adjoining grammars. In Pro
eedings of the5th Conferen
e of the European Chapter of the Asso
iationfor Computational Linguisti
s, pages 21�26, Berlin, Germany,1991.[3℄ L. Champollion. Lexi
alized non-lo
al MCTAG with domi-nan
e links is NP-
omplete. In Pro
eedings of Mathemati
sof Language 10, Los Angeles, California, 2007. To appear.[4℄ M. Garey and D. Johnson. Computers and intra
tability. W.H. Freeman & Co., New York, New York, 1979.[5℄ A. K. Joshi and Y. S
habes. Tree-adjoining grammars. InG. Rozenberg and A. Salomaa, editors, Handbook of FormalLanguages, volume 3, pages 69�124. Springer, Berlin, Ger-many, 1997.[6℄ L. Kallmeyer. Tree-lo
al multi
omponent tree-adjoininggrammars with shared nodes. Computational Linguisti
s,31(2):187�225, 2005.[7℄ T. Li
hte. An MCTAG with tuples for 
oherent 
onstru
tionsin German. In Pro
eedings of the 12th Conferen
e on FormalGrammar, Dublin, Ireland, 2007. To appear.[8℄ A. Ma
la
hlan and O. Rambow. Cross-serial dependen
iesin tagalog. In Pro
eedings of the Sixth International Work-shop on Tree Adjoining Grammar and Related Frameworks(TAG+6), pages 100�104, Veni
e, Italy, 2002.[9℄ J. Nivre. Constraints on non-proje
tive dependen
y parsing.In 11th Conferen
e of the European Chapter of the Asso-
iation for Computational Linguisti
s, pages 73�80, Trento,Italy, 2006.[10℄ O. Rambow and G. Satta. Formal properties of non-lo
ality.In Pro
eedings of the Se
ond International Workshop on TreeAdjoining Grammar and Related Frameworks (TAG+2),Philadelphia, Pennsylvania, 1992.[11℄ S. Shieber. Dire
t parsing of ID/LP grammars. Linguisti
sand Philosophy, 7:135�154, 1984.[12℄ S. Shieber. Eviden
e against the 
ontext-freeness of naturallanguage. Linguisti
s and Philosophy, 8:333�343, 1985.[13℄ A. Søgaard. Polynomial 
harts for totally unordered languages.In Pro
eedings of the 16th Nordi
 Conferen
e of Computa-tional Linguisti
s, pages 183�190, Tartu, Estonia, 2007.[14℄ K. Vijay-Shanker and D. Weir. Parsing some 
onstrained gram-mar formalisms. Computational Linguisti
s, 19(4):591�636,1993.


