
Tree Adjoining Grammars

Grammar Implementation with XMG

Laura Kallmeyer & Timm Lihte

HHU Düsseldorf

WS 2012

03.12.2012

Grammar Implementation with XMG 1

Outline

1

What is grammar implementation?

2

Two ways of tree template implementation:

Metarules

Metagrammars

3

eXtended Metagrammar (XMG)

4

A ase study with XMG

Grammar Implementation with XMG 2

Two kinds of grammar implementation

grammar/

linguisti theory

�implementation�

spei�ations

in aordane with a

grammar formalism

evaluation

of the theory

As is frequently pointed out but annot be overemphasized, an important

goal of formalization in linguistis is to enable subsequent researhers to

see the defets of an analysis as learly as its merits; only then an

progress be made e�iently. [Dowty, 1979, 322℄

Grammar Implementation with XMG 3

Two kinds of grammar implementation

grammar/

linguisti theory

�implementation�

spei�ations

in aordane with a

grammar formalism

�implementation�

evaluation

of the theory

grammar resoure

omputational

appliation

Grammar Implementation with XMG 4

What kind of grammar resoure?

S

tree template NP VP

V⋄ NP

tree insertion

anhor eats

Grammar Implementation with XMG 5

The implementation task for LTAG

General task

Implement a large-overage LTAG, i.e. based on the XTAG

grammar!

Subtasks:

1

Generate unlexialized trees (= tree templates)!

2

Generate a database of lexial anhors (= the lexion)!

3

Connet the tree templates with the lexion (= lexial

insertion)!

Grammar Implementation with XMG 6

Two ways of grammar implementation with TAG

XTAG tools [XTAG Researh Group, 2001℄

1

implementation tools (with metarules)

2

editor/viewer for MorphDB and SynDB

3

parser

XMG + lexConverter + TuLiPA

1

XMG: eXtensible MetaGrammar [Duhier et al., 2004℄

2

lexConverter (LEX2ALL)

3

TuLiPA: Tübingen Linguisti Parsing Arhiteture

[Parmentier et al., 2008℄

Grammar Implementation with XMG 7

Outline

1

What is grammar implementation?

2

Two ways of tree template implementation:

Metarules

Metagrammars

3

eXtended Metagrammar (XMG)

4

A ase study with XMG

Grammar Implementation with XMG 8

The situation

39 templates 12 tree templates

for transitive verbs for intransitive verbs

S

NP VP

V⋄ NP

S

NP VP

V⋄
S

NP S

NP VP

ǫ V⋄ NP

S

NP S

NP VP

ǫ V⋄
.

Basially, XTAG de�nes a set of 221 unrelated tree templates.

Grammar Implementation with XMG 9

Metarules for LTAG

[Beker, 1994℄, [Beker, 2000℄, [Prolo, 2002℄

Idea from GPSG [Gazdar, 1981℄

metarules

ore grammar

(tree templates)

expanded grammar

(tree templates)

︸ ︷︷ ︸
metarules onnet tree templates of a

tree family

Grammar Implementation with XMG 10

Metarules for LTAG: Example

Tnx0nx1:

αnx0Vnx1

(extration) (ative-passive alternation)

αW0nx0Vnx1 αnx1Vbynx0

(extration)

αW1nx1Vbynx0

Metarules do not only add struture, they an also eliminate

struture!

Grammar Implementation with XMG 11

Metagrammars for LTAG

[Candito, 1996℄, [Xia, 2001℄, [Crabbé, 2005℄

inheritane +

spei�ation

tree fragments tree templates

tree families

tree fragments: additional layer of abstration below the level

of tree templates

A tree template is the result of ombining and speifying tree

fragments and tree templates.

The notion of tree families is independent from the

onstrution of tree templates!

Grammar Implementation with XMG 12

Metagrammars for LTAG: Example

S

NP S

NP VP

ǫ V⋄ NP

⇐=

S

NP S

S

NP VP

VP VP

ǫ V⋄ NP

=⇒

S

NP VP

V⋄

Grammar Implementation with XMG 13

Metagrammars for LTAG: Example

S

NP S

NP VP

ǫ V⋄ NP

⇐=

S

NP S

S

NP VP

VP VP

ǫ V⋄ NP

=⇒

S

NP VP

V⋄

Grammar Implementation with XMG 14

Outline

1

What is grammar implementation?

2

Two ways of tree template implementation:

Metarules

Metagrammars

3

eXtended Metagrammar (XMG)

4

A ase study with XMG

Grammar Implementation with XMG 15

XMG - Bakground

name of the metagrammar formalism and of a metagrammar

ompiler

developed at LORIA, Nany, Frane

written in Oz/Mozart

available at http://souresup.ru.fr/xmg

⇒ Other metagrammar implementations exist, but XMG is the

most elaborate one.

Some existing implementations using XMG:

Frenh: FrenhTAG [Crabbé, 2005℄

English: XTAG with XMG [Alahverdzhieva, 2008℄

German: GerTT [Kallmeyer et al., 2008℄

Grammar Implementation with XMG 16

XMG - Desription language for tree fragments

L
D

: Desription language for tree fragments

Let ?x and ?y be nodes:

Desription ::=

?x -> ?y | ?x ->+ ?y | ?x ->* ?y |

?x >> ?y | ?x >>+ ?y | ?x >>* ?y |

?x = ?y |

?x[f=E℄ | ?x(p=E) |

Desription ∧ Desription

-> immediate dominane

->+ dominane (transitive, non-re�exive losure)

->* re�exive dominane (transitive, re�exive losure)

>> immediate preedene

>>+ preedene (transitive, non-re�exive losure)

>>* re�exive preedene (transitive, re�exive losure)

?x[f=E℄ feature delaration

?x(p=E) property delaration

Grammar Implementation with XMG 17

XMG - Desription language for tree fragments

L
D

: Desription language for tree fragments

Let ?x and ?y be nodes:

Desription ::=

?x -> ?y | ?x ->+ ?y | ?x ->* ?y |

?x >> ?y | ?x >>+ ?y | ?x >>* ?y |

?x = ?y |

?x[f=E℄ | ?x(p=E) |

Desription ∧ Desription

Example:

S

NP VP

an be desribed as

?S -> ?NP,

?S -> ?VP1,

?NP >> ?VP1,

?S[at=s℄,

?NP[at=np℄,

?VP1[at=vp℄

Grammar Implementation with XMG 18

XMG - Desription language for tree fragments

Tree desriptions an denote more than one tree fragment!

BUT: Eah of the tree fragments has to omply with all of the tree

desriptions!

⇒ In�nitely many trees satisfy

?S -> ?NP,

?S -> ?VP1,

?NP >> ?VP1,

?S[at=s℄,

?NP[at=np℄,

?VP1[at=vp℄

XMG only onsiders the minimal model of a tree desription,

hene trees that only ontain nodes given in the desription.

Grammar Implementation with XMG 19

XMG - Desription language - Classes

Tree desriptions are enapsuled in so-alled lasses:

L
C

: Desription language for the ombination of tree desriptions

Class ::= Name → Content

Content ::=

Desription | Name |

Content ∨ Content |

Content ∧ Content

Node variables have a sope loal to the lass (= name spae).

When ombining tree desriptions δ
1

and δ
2

:

1

XMG uni�es δ
1

and δ
2

, and

2

XMG renames variables ommon variables.

Grammar Implementation with XMG 20

XMG - Desription languages - Examples

S

NP VP

VP

V⋄
=⇒

S

NP VP

V⋄

, . . .

?S -> ?NP,

?S -> ?VP1,

?NP >> ?VP1,

?S[at=s℄,

?NP[at=np℄,

?VP1[at=vp℄

?VP1 -> ?V,

?VP1[at=vp℄,

?V[at=v℄,

?V(mark=anhor)

?S -> ?NP,

?S -> ?VP1,

?NP >> ?VP1,

?S[at=s℄,

?NP[at=np℄,

?VP1[at=vp℄,

?VP2 -> ?V,

?VP2[at=vp℄,

?V[at=v℄,

?V(mark=anhor)

Grammar Implementation with XMG 21

XMG - The soure ode

Tree fragments, tree templates and tree families are models of

so-alled lasses (as known from objet oriented programming).

lass betavxPnx

delare ?VP0 ?VP1 ?PP ?P ?NP

{<syn>{

...

}}

tree desriptions?

feature strutures?

type of node (footnode, substitution node, anhor)?

ombination of trees?

Grammar Implementation with XMG 22

XMG - The soure ode - The struture of trees

There are two ways to enode the struture of trees: (1) through

tree desriptions, or (2) through brakets and linear order.

VP(=?VP0)

VP*(=?VP1) PP(=?PP)

P⋄(=?P) NP↓(=?NP)

lass betavxPnx

delare ?VP0 ?VP1 ?PP ?P ?NP

{<syn>{

node ?VP0; node ?VP1;

node ?PP; node ?NP;

node ?P;

?VP0 -> ?VP1; ?VP0 -> ?PP;

?PP -> ?P; ?PP -> ?NP;

?VP1 >> ?PP; ?P >> ?NP

}}

lass betavxPnx

delare ?VP0 ?VP1 ?PP ?P ?NP

{<syn>{

node ?VP0 {

node ?VP1

node ?PP {

node ?P

node ?NP

}

} }}

Grammar Implementation with XMG 23

XMG - The soure ode - Properties and feature strutures

Firstly, the value types of features and properties have to be

delared.

type MARK = {subst, foot, anhor, oanhor, nadj }

type CAT = {np,v,vp,s}

Seondly, properties and features must be delared as well.

property mark : MARK

feature at : CAT

Finally, properties and features of nodes an be spei�ed.

lass betavxPnx

{ ...

node ?NP (mark = subst) [at = np]
... }

Grammar Implementation with XMG 24

XMG - The soure ode - Complex feature strutures

How to delare and use omplex features?

type AGR = [3rdsing : bool,

num : NUM,

pers : PERS,

gen : GEN]
feature agr:AGR

...

node ?NP [agr = [3rdsing = +]]
...

Top-bottom-feature-strutures

In XMG, there are prede�ned omplex features top and bot for the

spei�ation of top-bottom-feature strutures. Otherwise, feature

spei�ations hold for both top and bottom.

Note: Links between features an be established by variables!

Grammar Implementation with XMG 25

XMG - The soure ode - Reusing lasses

General onvention: Names of reused lasses have [℄ as a post�x.

First method:

Class instantiations an be assigned to variables in the body. Only

exported variables of the lass an be used by means of the dot operator.

lass betavxPnx

{ ...

?VPSpine = VPSpine[℄;

?VPSpine.?VP0 = ?XP;

... }

Seond method:

Classes an be imported, suh that all variables of the imported lass,

that have been exported, an be used diretly.

lass betavxPnx

import VPSpine[℄

{...

?VP0 = ?XP;

... }

Grammar Implementation with XMG 26

XMG - The soure ode - Evaluation

Whih lass represents a tree template, i.e. whih lass needs to be

evaluated by XMG?

⇒ This is expressed/triggered by the ommand value.

lass betavxPnx

...

value betavxPnx

Grammar Implementation with XMG 27

XMG - The soure ode - Putting the piees together I

type MARK = {subst, foot, anhor, oanhor, nadj}

type CAT = {np,v,vp,s,pp,p}

property mark : MARK

feature at : CAT

%%

% TREE FRAGMENTS:

%%

lass VPSpine

export ?VP0 ?VP1

delare ?VP0 ?VP1

{ <syn>{

node ?VP0 [at=vp℄{

node ?VP1 (mark=foot) [at=vp℄

}

}

}

lass PrepositionalPhrase

export ?PP ?P ?NP

delare ?PP ?P ?NP

{ <syn>{

node ?PP [at=pp℄ {

node ?P (mark=anhor) [at=p℄

node ?NP (mark=subst) [at=np℄

}

}

}

Grammar Implementation with XMG 28

XMG - The soure ode - Putting the piees together II

%%

% TREE TEMPLATES:

%%

lass betavxPnx

delare ?PrepP ?VPSpine

{

?PrepP = PrepositionalPhrase[℄;

?VPSpine = VPSpine[℄;

<syn> {

?VPSpine.?VP0 -> ?PrepP.?PP;

?VPSpine.?VP1 >> ?PrepP.?PP

}

}

%%

% EVALUTATION:

%%

value betavxPnx

Grammar Implementation with XMG 29

XMG - The soure ode - Delaring a tree family

lass Tnx0V

delare ?Tnx0V

{

?Tnx0V = (alphanx0V[℄ | alphaW0nx0V[℄)

}

...

value Tnx0V

Grammar Implementation with XMG 30

Outline

1

What is grammar implementation?

2

Two ways of tree template implementation:

Metarules

Metagrammars

3

eXtended Metagrammar (XMG)

4

A ase study with XMG

Grammar Implementation with XMG 31

XMG - Case study

How to desribe the tree families for intransitive (Tnx0V) and transitive

(Tnx0Vnx1) tree templates?

S

NP VP

V⋄

S

NP S

NP VP

ǫ V⋄

S

NP VP

V⋄ NP

S

NP S

NP VP

ǫ V⋄ NP

S

NP S

NP VP

V⋄ NP

ǫ

Grammar Implementation with XMG 32

XMG - Case study - The fragments

VP

V⋄

lass VerbProjetion

export ?VP ?V

delare ?VP ?V

{<syn>{

node ?VP [at = vp℄;

node ?V (mark = anhor)[at = v℄;

?VP -> ?V

}

}

Grammar Implementation with XMG 33

XMG - Case study - The fragments

S

NP↓ VP

lass Subjet

export ?S ?NP ?VP

delare ?S ?NP ?VP

{ <syn>{

node ?S [at = s℄{

node ?NP (mark = subst)[at = np℄

node ?VP [at = vp℄

}

}

}

Grammar Implementation with XMG 34

XMG - Case study - Building a tree template

S

NP↓ VP

VP

V⋄
=⇒

S

NP↓ VP

V⋄

lass alphanx0V

import VerbProjetion[℄

export ?S ?NP0

delare ?Subj ?S ?NP0

{

?Subj = Subjet[℄; ?NP0 = ?Subj.?NP;

?VP = ?Subj.?VP; ?S = ?Subj.?S

}

Grammar Implementation with XMG 35

XMG - Case study - Adding fragments for extration

WhNP:

S

NP↓ S

EmptyWord:

XP

ǫ

alphanx0V:

S

NP↓ VP

V⋄

=⇒

???

In order to reuse alphanx0V here one has to underspeify the mark

property of leaf nodes!

1

in subjet and objet fragments and in tree templates (e.g. nx0V)

2

only in subjet and objet fragments

3

. . .

Grammar Implementation with XMG 36

XMG - Case study - A redesigned subjet fragment

S

NP

?NPMARK
VP

lass Subjet

export ?S ?NP ?VP ?NPMARK

delare ?S ?NP ?VP ?NPMARK

{ <syn>{

node ?S [at = s℄{

node ?NP (mark = ?NPMARK)[at = np℄

node ?VP [at = vp℄

}

}

}

Grammar Implementation with XMG 37

XMG - Case study - Adding fragments for extration

1. the modi�ed subjet lass is used to de�ne the lass nx0V, whih is

then reused in alphaW0nx0V:

WhNP:

S

NP↓ S

EmptyWord:

XP

ǫ

nx0V:

S

NP

?NPMARK
VP

V⋄

=⇒

alphaW0nx0V:

S

NP↓ S

NP

?NPMARK
VP

ǫ V⋄
Grammar Implementation with XMG 38

XMG - Case study - Adding fragments for extration

1. the modi�ed subjet lass is used to de�ne the lass nx0V, whih is

then reused in alphaW0nx0V:

Subjet VerbProjetion Objet

nx0V

alphanx0V WhNP+EmptyWord nx0Vnx1

Wnx0Vnx1 alphanx0Vnx1

alphaW0nx0V alphaW0nx0Vnx1 alphaW1nx0Vnx1

Tnx0V Tnx0Vnx1

Grammar Implementation with XMG 39

XMG - Case study - Adding fragments for extration

2. alphaW0nx0V is diretly de�ned through the modi�ed subjet lass:

WhNP:

S

NP↓ S

EmptyWord:

XP

ǫ

Subjet:

S

NP

?NPMARK
VP

VerbProjetion:

VP

V⋄

=⇒

alphaW0nx0V:

S

NP↓ S

NP

?NPMARK
VP

ǫ V⋄

Grammar Implementation with XMG 40

XMG - Case study - Adding fragments for extration

2. alphaW0nx0V is diretly de�ned through the modi�ed subjet lass:

Subjet WhNP+EmptyWord Objet

BaseSubjet WhSubjet WhObjet BaseObjet

VerbProjetion

alphanx0V alphaW0nx0V

Tnx0V alphaW0nx0Vnx1

alphanx0Vnx1

alphaW1nx0Vnx1

Tnx0Vnx1

Grammar Implementation with XMG 41

XMG - Case study - Adding fragments for extration

. . . or one dispenses with the evaluation of tree templates and uses only

tree families:

Subjet WhNP+EmptyWord Objet

BaseSubjet WhSubjet WhObjet BaseObjet

VerbProjetion

Tnx0V

Tnx0Vnx1

NB: This probably makes neessary the use of interfae onstraints in order to

rule out multiple Wh-extration, i.e. to reuse the right members of tree families.

Grammar Implementation with XMG 42

XMG - Case study - Adding fragments for extration

. . . or one dispenses with the evaluation of tree templates and uses only

unrelated tree families:

WhNP+EmptyWord

BaseSubjet WhSubjet WhObjet BaseObjet

Subjet VerbProjetion Objet

Tnx0V Tnx0Vnx1

Along the lines of [Alahverdzhieva, 2008℄, no interfae onstraints neessary.

Grammar Implementation with XMG 43

XMG - Summary

XMG is a sophistiated tool for desribing elementary trees and tree

families in a fatorized manner, i.e. based on tree fragments.

XMG is delarative/monotonous.

XMG is very �exible, hene it allows for very many di�erent ways to

desribe the same grammar.

How to hoose among suitable metagrammars? Number of lasses?

Number of inheritane relations? Complexity of inheritane

hierarhies?

⇒ No obvious riterion for the non-trivial ases, partiularly with

broad overage grammars.

⇒ Considerably depends on what the grammar writer prefers . . .

Grammar Implementation with XMG 44

Alahverdzhieva, K. (2008).

XTAG using XMG. A ore tree-adjoining grammar for English.

Master's thesis, University of Nany 2 / University of Saarland.

Beker, T. (1994).

HyTAG: A New Type of Tree Adjoining Grammars for Hybrid Syntati Representations of Free

Word Order Languages.

PhD thesis, Universität des Saarlandes.

Beker, T. (2000).

Patterns in metarules for TAG.

In Abeillé, A. and Rambow, O., editors, Tree Adjoining Grammars: Formalisms, Linguisti

Analyses and Proessing, volume 107 of CSLI Leture Notes, pages 331�342. CSLI Publiations,

Stanford.

Candito, M.-H. (1996).

A priniple-based hierarhial representation of LTAGs.

In Proeedings of the 16th International Conferene on Computational Linguistis (COLING 96),

Copenhagen.

Crabbé, B. (2005).

Représentation informatique de grammaires d'arbres fortement lexialisées: Le as de la

grammaire d'arbres adjoints.

PhD thesis, Université Nany 2.

Dowty, D. R. (1979).

Word Meaning and Montague Grammar.

D. Reidel Publishing Company, Dordreht, Boston, London.

Reprinted 1991 by Kluwer Aademi Publishers.

Duhier, D., Le Roux, J., and Parmentier, Y. (2004).

The Metagrammar Compiler: An NLP Appliation with a Multi-paradigm Arhiteture.

In Seond International Mozart/Oz Conferene (MOZ'2004).

Gazdar, G. (1981).

Unbounded dependenies and oordinated struture.

Linguisti Inquiry, 12:155�182.

Kallmeyer, L., Lihte, T., Maier, W., Parmentier, Y., and Dellert, J. (2008).

Developing a TT-MCTAG for German with an RCG-based parser.

In (ELRA), E. L. R. A., editor, Proeedings of the Sixth International Language Resoures and

Evaluation (LREC'08), Marrakeh, Moroo.

Parmentier, Y., Kallmeyer, L., Maier, W., Lihte, T., and Dellert, J. (2008).

TuLiPA: A syntax-semantis parsing environment for mildly ontext-sensitive formalisms.

In Proeedings of the Ninth International Workshop on Tree Adjoining Grammars and Related

Formalisms (TAG+9), pages 121�128, Tübingen, Germany.

Prolo, C. A. (2002).

Generating the XTAG English grammar using metarules.

In Proeedings of COLING-02, pages 814�820, Taipei. Taiwan.

Xia, F. (2001).

Automati grammar generation from two di�erent perspetives .

PhD thesis, University of Pennsylvania.

XTAG Researh Group (2001).

A Lexialized Tree Adjoining Grammar for English.

Tehnial report, Institute for Researh in Cognitive Siene, University of Pennsylvania,

Philadelphia, PA.

