Tree Adjoining Grammars
TAG with Feature Structures

Laura Kallmeyer & Timm Lichte

HHU Diisseldorf

WS 2012
22.10.2012

Natural Language Syntax with TAG 1/20

Outline

@ Why feature structures?

© Basics of feature structure logic
© Feature Structure based TAG (FTAG)

Natural Language Syntax with TAG 2/20

Why feature structures?

Idea: Instead of atomic categorial symbols, feature structures are
used as non-terminal nodes.

Two reasons with respect to TAG:
@ generalizing agreement (via underspecification)
@ modelling adjunction constraints

= smaller grammars that are easier to maintain

Natural Language Syntax with TAG 3/20

Why feature structures? Agreement

Example without feature structures:

S S
T T
NPpl/nom V‘P NPﬁ3/sg/nom V‘P
A
NPpI/acc NPpl/nom """ - Vpl Vﬁ3/sg
\ \
grammars gram‘mars leak leak

= The generalization that the finite verb and its subject agree in
number and person is not captured.

= Every morphological alternative gives rise to a new elementary
tree!

Natural Language Syntax with TAG 4/20

Why feature structures? Adjunction constraints

Example without feature structures:

S
. /\
Bis : NP VPOA({8i,,Bare: Bpeems--- })
. u
VP
S (/’, v
VoovPr B
\ leaking

— The generalization that some form of the auxiliary to be needs
to be adjoined to leaking is not captured.

Natural Language Syntax with TAG 5/20

Why feature structures? Combining the two

Things get even worse when combining agreement with
adjunction constraints:

o If leaking requires a singular auxiliary to adjoin at the VP
node, then the subject must be NP3 sz /nom-
S
/\
NP3/sg/nom VPOA({BI':;BWHI'7~"})

\
\Y

leaking

o If leaking requires a plural auxiliary to adjoin at the VP node,
then the subject must be NP,/ ,op-
S
,_,——"’/,\
NPpi/nom VP OA({Bare: Buere - 1)

[
V

|
leaking

Natural Language Syntax with TAG 6/20

Feature structures - Basics (1)

attr; val,] {<attry,valy >, <attrp,valy >,
attry vala ..., <attrpval, >}

attr, val,

ALC B, iff

i C .
subsumption L :| .. € A, then t € B.

AL B = C, iff
unification LI :| C is the smallest feature structure such that
ALC Cand BLC C.

Note: We are using only untyped feature structures!

Natural Language Syntax with TAG 7/20

Feature structures - Basics (2)

Feature structures as values:

@ non-recursive: num sg
pers 1
agr 3rdsing -
gen neuter

e o (o]

FTAG uses non-recursive feature structures!

Natural Language Syntax with TAG 8/20

Feature structures - Basics (3)

Re-entrancies (or “links”):

@ boxed numbers (@, [, ...)

@ within feature structures:

attr; [attr; [valy
attr, [1] attro

FTAG uses acyclic re-entrancies!

[a.ttrl [attrz H

@ between feature structures (in a tree):

T

[attrl m] [a.ttrl]

Natural Language Syntax with TAG 9/20

Feature structures - as tree nodes in a TSG

fcat 5]

cat np [ca,t vp]
agr [1]
cat np case nom ‘
A
num plur e cat v
agr |per 3 [agr E[Srdsing —ﬂ
3rdsing - |
leak
grammars

@ Agreement properties can be undespecified.

@ When combining two trees, the feature structures of the
participating nodes are unified.

@ TSG: substitution ~ unification of leaf nodes and root nodes

Natural Language Syntax with TAG 10/20

FTAG (1)

Feature-structure based TAG (FTAG): Vijay-Shanker & Joshi
(1988).

Modelling adjunction constraints requires to split the feature
structure of nodes:

o top features: “what the node represents in the surrounding
structure”

@ bottom features: “what the tree below the node represents”

In the final derived tree, top and bottom unify.

Natural Language Syntax with TAG 11/20

FTAG (2): Adjunction constraints

Adjunction constraints are encoded in the following way:

@ SA: top and bot are unifiable.

[eat vp)
[eat vp)

@ OA + SA: feature mismatch between top and bot
cat vp
mode ind

cat vp
mode ger

@ NA: top and bot are unifiable, but there is no auxiliary tree in
the grammar that can be unified with top and bot.

Natural Language Syntax with TAG 12/20

FTAG (3): Agreement and adjunction constraints

Example for top-bottom feature structures:

cat vp

mode ind A

S
- EZH 3g |:ca.t np] cat vp
1
3rdsing + agr ast [

[ca.t vp] [Cat vp }

is leaking

Natural Language Syntax with TAG 13/20

FTAG (4): Unification with top-bottom feature structures

Unification during derivation:

@ Substitution: the top of the root of the rewriting tree unifies
with the top of the substitution node

@ Adjunction: the top of the root of the rewriting tree unifies
with the top of the adjunction site, and the bottom of the foot
of the rewriting tree unifies with the bottom of the adjunction

site.
[r-top]---___
[r-bot]

*
[f-top])
[f-bot]---""

@ In the final derived tree, top and bottom unify for all nodes.

Natural Language Syntax with TAG 14/20

FTAGHE .

Example:
[cat S]
[cat S]
cat vp
mode ind Vb
ol o agr .— agr [
s & mode ind
agr per 3
3rdsing + » vp
7 mode ger
[cat vp] ’

[cat V] [cat Vp] * cat V]
[cat v] [Cat vp] } ’,//
mode ger leaking

Natural Language Syntax with TAG 15/20

FAGHD e

cat s

xXample: [:|

cat np cat vp
agr [1 mode ind

num Sg
agr per 3
3rdsing +
[cat Vp]
/\

oot v [ear v

[cat V] [cat vp]

mode ger

[

is [cat v]

[cat v]
|

leaking

Natural Language Syntax with TAG 16/20

FTAG (5)

Example: [cat s
[ca,t s-
/\
cat np [cat vp
agr mode ind
‘é;: A num Sg
’ agr [1]| per 3
3rdsing +
[ca,t vp]
/ o
cat np
num plur [cat V] [cat Vp]
agr | per 3 [cat v cat vp
3rdsing - mode ger
[cat np] \
| is [cat V]
grammars
[cat v]
|
leaking

Natural Language Syntax with TAG

17/20

FTAG (6): Adjunction constraints (NA)

@ Features must be chosen in a way that no unification with
feature structures of auxiliary trees is possible (and therefore

no adjunction).

@ Example: FTAG for the copy language.

[adjtop no] [adjtop no]
[adjbot yes] [adjbot yes]
_—1
e T o o b e
[Ca S] [ca,t s] [cat s]
€ ’* ’*
[a.djtop yes] a [adjtop yes] b
[adjbot no] [adjbot no]

Natural Language Syntax with TAG 18/20

FTAG (7)

LTAG feature structures are restricted; there is only a finite set of
possible feature structures (given finite sets of features and
values, and non-recursivity).

Therefore, the following can be shown:

For each FTAG there exists a weakly equivalent TAG with
adjunction constraints and vice versa. The two TAGs generate even
the same sets of trees, only with different node labels.

Natural Language Syntax with TAG 19/20

Summary

@ Feature structures as nodes allow to abstract away from
agreement properties by underspecification. Linguistic
generalizations can be expressed more conveniently.

@ Adjunction constraints can be encoded into feature structures.

@ The feature structures of FTAG do not add expressive power,
hence FTAG and TAG are weakly equivalent.

Natural Language Syntax with TAG 20/20

