
Tree Adjoining Grammars

Motivation for TAG

Laura Kallmeyer & Timm Li
hte

HHU Düsseldorf

WS 2012

15.10.2012

Motivation for TAG 1/26



Outline

1. Why CFG is not enough

2. Tree Substitution Grammars

3. Tree Adjoining Grammars

Adjun
tion and substitution

Adjun
tion 
onstraints

Motivation for TAG 2/26



Why CFG is not enough

... for treating natural language:

1. only atomi
 non-terminals

2. only weak lexi
alization (lexi
alization 
hallenge)

3. expressive power is too low (expressivity 
hallenge)

Motivation for TAG 3/26



Why CFG is not enough (1) - Atomi
 non-terminals

S → NP VP NP → John NP → Mary

VP → V VP → V NP V → sleeps V → likes

Possible derivation:

S ⇒ NP VP ⇒ John VP ⇒ John V ⇒ John sleeps

S

∗

⇒ John likes Mary

S

∗

⇒ John sleeps Mary

How to treat sub
ategorization frames, number agreement, and


ase marking?

(1) a. Kim depends on Sandy.

*Kim depends Sandy.

*Kim depends.

b. *The 
hildren depends on Sandy.


. Kim depends on her/*she.

Motivation for TAG 4/26



Why CFG is not enough (1)

How to treat sub
ategorization frames, number agreement, and


ase marking?

=⇒ en
ode the ne
essary information into the non-terminal

symbols

S → NP

3sg/nom VP

3sg/itr S → NP

3sg/nom VP

3sg/tr

VP

3sg/itr → V

3sg/itr VP

3sg/tr → V

3sg/tr NP3sg/a



NP

3sg/nom → John NP

3sg/a

 → Mary

V

3sg/itr → sleeps V

3sg/tr → likes

S

∗

⇒ John likes Mary

S

∗

⇒ John sleeps

Drawba
k: Every possible 
ombination of sub
ategorization frame,

number agreement, and 
ase marking ne
essitates its own rule (let

alone the number of non-terminal symbols).

Motivation for TAG 5/26



Why CFG is not enough (1)

Example from German: NP → D N (determiner noun pairs)

Müller(2007) presents a CFG with 48 non-terminal symbols and 24

rules!

NP

3sg/nom → D

fem/sg/nom N

fem/sg/nom

NP

3sg/nom → D

mas
/sg/nom N

mas
/sg/nom

NP

3sg/nom → D

neu/sg/nom N

neu/sg/nom

NP

3pl/nom → D

fem/pl/nom N

fem/pl/nom

NP

3pl/nom → D

mas
/pl/nom N

mas
/pl/nom

NP

3pl/nom → D

neu/pl/nom N

neu/pl/nom

. . .

=⇒ grammar writing is tedious and error prone

=⇒ generalizations are hardly expressible

Remedy: feature stru
tures instead of atomi
 non-terminal

symbols, uni�
ation, underspe
i�
ation

Motivation for TAG 6/26



Why CFG is not enough (2) - Only weak lexi
alization

Lexi
alization

In a lexi
alized grammar, ea
h element of the grammar 
ontains at least

one lexi
al item (terminal symbol).

G

1

: S → SS , S → a

G

2

: S → aS , S → a

Formally interesting: A �nite lexi
alized grammar provides �nitely

many analyses for ea
h string (�nitely ambiguous).

Linguisti
ally interesting: Synta
ti
 properties of lexi
al items 
an

be a

ounted for more dire
tly.

Computationally interesting: The sear
h spa
e during parsing 
an

be delimited (grammar �ltering).

Motivation for TAG 7/26



Why CFG is not enough (2)

Lexi
alizing a CFG

Greiba
h normal form: A → aB

1

...B
k

(k ≥ 0)

weak lexi
alization: string language is preserved

strong lexi
alization: tree stru
ture is preserved

Question: 
an CFGs be lexi
alized su
h that the set of trees

remains the same (strong lexi
alization)?

Answer: No. Only weak lexi
alization (same string language).

G

1

: S → SS , S → a

G

2

: S → aS , S → a

G

1


annot be strongly lexi
alized with some �nite CFG, e.g. G

2

.

Motivation for TAG 8/26



Why CFG is not enough (3) - Low expressive power

Question: Are CFGs powerful enough to des
ribe all natural

language phenomena?

Answer: No.

Example: 
ross-serial dependen
ies in Dut
h and in Swiss

German

(1)

... dat Wim Jan Marie de kinderen zag helpen leren zwemmen

... that Wim Jan Marie the 
hildren saw help tea
h swim

`... that Wim saw Jan help Marie tea
h the 
hildren to swim'

A formalism that 
an generate 
ross-serial dependen
ies must be

able to generate the 
opy language {ww |w ∈ {a, b}∗}.

But: The 
opy language is not 
ontext-free.

Motivation for TAG 9/26



Tree Substitution Grammar (TSG)

A tree rewriting version of CFG

A CFG-produ
tion 
orresponds to a TSG-tree with the LHS as

root and the RHS as daughters.

Applying a CFG-produ
tion 
orresponds to substituting a

non-terminal leaf for a new tree.

S → NP VP

NP → John

VP → V

V → sleeps

⇒
NP

John

S

NP VP

VP

V

V

sleeps

Motivation for TAG 10/26



Tree Substitution Grammar (TSG)

TSG-trees 
an be �higher� than CFG-produ
tions:

NP

John

S

NP VP

V

sleeps

;

S → NP VP

NP → John

VP → V

V → sleeps

⇒ TSG 
omes with an extended domain of lo
ality.

⇒ But: re
ursion 
annot be fa
tored away.

Motivation for TAG 11/26



Tree Substitution Grammar (2)

A Tree Substitution Grammar (TSG) is a triple G = 〈N,T , I 〉
su
h that

T and N are disjoint alphabets, the terminals and

nonterminals, and

I is a �nite set of initial trees.

The trees 
an be 
ombined into larger trees by substitution.

The tree language of a TSG is the set of trees generated in this

way that do not 
ontain any remaining non-terminal leaves.

Motivation for TAG 12/26



Tree Substitution Grammar (3)

Some important fa
ts:

TSG is weakly equivalent to CFG (same string language).

TSG is not powerful enough to des
ribe 
ross-serial

dependen
ies.

It is not possible to �nd a strongly equivalent (same trees)

lexi
alized TSG for ea
h CFG.

S → SS

S → a

S S

a S S

a

=⇒ Solution: adjun
tion operation and adjun
tion 
onstraints!

Motivation for TAG 13/26



Tree Adjoining Grammar (TAG)

TAG = TSG + adjun
tion + adjun
tion 
onstraints

The de�nition of TAG goes ba
k to Joshi et al. (1975).

TAG is among the most frequently used grammar formalisms

in 
omputational linguisti
s.

TAG is interesting both for its 
omputational properties

(mildly 
ontext-sensitivity) and for its linguisti
 appli
ations.

There are large 
overage TAG grammars for English (XTAG,

Philadelphia) and Fren
h (FTAG, Paris).

Motivation for TAG 14/26



Tree Adjoining Grammar - Adjun
tion (1)

Rewriting operations:

substitution: repla
ing a leaf with a new tree.

adjun
tion: repla
ing an internal node with a new tree.

Trees that may adjoin are 
alled auxiliary trees and have a spe
ial

leaf, the footnode (marked by *). After adjuntion, the subtree

below the target node appears below the footnode.

Example:

VP

ADV VP*

sometimes

The root node and the footnode are required to 
arry the same

label. The path from the root node to the footnode is 
alled the

spine.

Motivation for TAG 15/26



Tree Adjoining Grammar - Adjun
tion (2)

NP

John

S

NP VP

VP

ADV VP

∗
V

sometimes laughs

derived tree

laugh[1, john][2, sometimes]:

S

NP VP

John ADV VP

sometimes V

laughs

⇒ TAG 
omes with an extended domain of lo
ality.

⇒ And: re
ursion 
an be fa
tored away by means of adjun
tion!

Motivation for TAG 16/26



Tree Adjoining Grammar - Adjun
tion (3)

A Tree Adjoining Grammar (TAG) is a quadruple

G = 〈N,T , I ,A〉 su
h that

T and N are disjoint alphabets, the terminals and

nonterminals,

I is a �nite set of initial trees, and

A is a �nite set of auxiliary trees.

The trees in I ∪ A are 
alled elementary trees.

G is lexi
alized i� ea
h elementary tree has at least one leaf with a

terminal label (LTAG).

Motivation for TAG 17/26



Tree Adjoining Grammar - Adjun
tion (4)

A derivation starts with an initial tree.

In a �nal derived tree, all leaves must have terminal labels:

Let G = 〈I ,A,N,T 〉 be a TAG. Let γ and γ
′
be �nite trees.

γ ⇒ γ
′
in G i� there is a node position p and an instan
e γ

′

0

of a tree (possibly derived from some) γ
0

∈ I ∪ A su
h that

γ
′ = γ[p, γ

0

].
∗

⇒ is the re�exive transitive 
losure of ⇒.

The tree language of G is L

T

(G ) := {γ | there is an α ∈ I

su
h that α
∗

⇒ γ and all leaves in γ have terminal labels}.

Motivation for TAG 18/26



Tree Adjoining Grammar - Lexi
alization 
hallenge

LTAGs strongly lexi
alize (�nitely ambiguous) CFGs, but not TAGs.

Example:

S → SS

S → a

is strongly equivalent with

S S

a S* S

a

S

S S

S S S S

a a a a

=⇒

S

a

S

S* S

a

S

S* S

a

S

S* S

a

Motivation for TAG 19/26



Tree Adjoining Grammar - Expressivity 
hallenge

TAG 
an generate 
ross-serial dependen
ies in Dut
h.

S

S V

i

NP VP zwemen

de kinderen V

i

ǫ

S

S V

i

NP VP leren

Marie S* V

i

ǫ

S

S V

i

NP VP helpen

Jan S* V

i

ǫ

S

NP VP

Wim S* V

zag

But: Also non-
rossing dependen
ies are generated, sin
e it's not

possible to blo
k adjun
tion at the root nodes!

Motivation for TAG 20/26



Tree Adjoining Grammar - Adjun
tion 
onstraints (1)

TAG as de�ned above are more powerful than CFG, but they


annot generate the 
opy language.

In order to in
rease the expressive power, adjun
tion 
onstraints are

introdu
ed that spe
ify for ea
h node

1

whether adjun
tion is mandatory and

2

whi
h trees 
an be adjoined.

Motivation for TAG 21/26



Tree Adjoining Grammar - Adjun
tion 
onstraints (2)

A TAG with adjun
tion 
onstraints is a tuple 〈N,T , I ,A,O,C 〉
su
h that

〈N,T , I ,A〉 is a TAG,

O : {µ |µ is a node in a tree in I ∪ A} → {1, 0} is a fun
tion,

and

C : {µ |µ is a node in a tree in I ∪ A} → P(A) is a fun
tion.

Motivation for TAG 22/26



Tree Adjoining Grammar - Adjun
tion 
onstraints (3)

Three types of 
onstraints are distinguished:

Obligatory Adjun
tion (OA):

a node µ with O(µ) = 1

Null Adjun
tion (NA):

a node µ with O(µ) = 0 and C (µ) = ∅

Sele
tive Adjun
tion (SA):

a node µ with O(µ) = 0 and C (µ) 6= ∅ and C (µ) 6= A

It is 
ommon pra
ti
e to let the leaves 
arry the NA-
onstraint.

Motivation for TAG 23/26



Tree Adjoining Grammar - Expressivity 
hallenge

TAG with adjun
tion 
ontraints for 
ross-serial dependen
ies in Dut
h:

S

NA

S

OA

V

i

NP VP zwemen

de kinderen V

i

ǫ

S

NA

S

OA

V

i

NP VP leren

Marie S

∗

NA

V

i

ǫ

S

NA

S

OA

V

i

NP VP helpen

Jan S

∗

NA

V

i

ǫ

S

NA

NP VP

Wim S

∗

NA

V

zag

Motivation for TAG 24/26



Tree Adjoining Grammar - Expressivity 
hallenge

TAG with adjun
tion 
onstraints for the 
opy language

{ww |w ∈ {a, b}∗}:

S

ǫ

S

NA

a S

S

∗

NA

a

S

NA

b S

S

∗

NA

b

Motivation for TAG 25/26



Summary

Starting point: 
an we des
ribe natural languages with CFGs?

CFGs: string rewriting formalism, no strong lexi
alization, no


ross-serial dependen
ies.

TSGs: tree rewriting formalism, no strong lexi
alization, no


ross-serial dependen
ies.

TAG = TSG + adjun
tion + adjun
tion 
onstraints

strong lexi
alization (at least of CFGs)


ross-serial dependen
ies

Motivation for TAG 26/26


