
Mildly Context-Sensitive Grammar

Formalisms:

Linear Context-Free Rewriting Systems

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

Grammar Formalisms 1 LCFRS

Kallmeyer Sommersemester 2011

Overview

1. Basic Ideas

2. LCFRS and CL

3. LCFRS and MCFG

4. LCFRS with Simple RCG syntax

Grammar Formalisms 2 LCFRS

Basic Ideas (1)

Linear Context-Free Rewriting Systems (LCFRS) can be conceived

as a natural extension of CFG:

• In a CFG, non-terminal symbols A can span single strings, i.e.,

the language derivable from A is a subset of T ∗.

• Extension to LCFRS: non-terminal symbols A can span tuples

of (possibly non-adjacent) strings, i.e., the language derivable

from A is a subset of (T ∗)k

⇒ LCFRS displays an extended domain of locality

Grammar Formalisms 3 LCFRS

Kallmeyer Sommersemester 2011

Basic Ideas (2)

Different spans in CFG and LCFRS:

CFG:

A

γ

LCFRS:

•

A

• •

γ1 γ2 γ3

Grammar Formalisms 4 LCFRS

Basic Ideas (3)

Example for a non-terminal with a yield consisting of 2

components:

yield(A) = 〈anbn, cndn〉, with n ≥ 1.

The rules in an LCFRS describe how to compute an element in the

yield of the lefthand-side (lhs) non-terminal from elements in the

yields of the right-hand side (rhs) non-terminals.

Ex.: A(ab, cd) → ε A(aXb, cY d) → A(X, Y)

The start symbol S is of dimension 1, i.e., has single strings as

yield elements.

Ex.: S(XY) → A(X, Y)

Language generated by this grammar (yield of S):

{anbncndn |n ≥ 1}.

Grammar Formalisms 5 LCFRS

Kallmeyer Sommersemester 2011

Basic Ideas (4)

• In a CFG derivation tree (parse tree), dominance is determined

by the relations between lhs symbol and rhs symbols of a rule.

• Furthermore, there is a linear order on the terminals and on all

rhs of rules.

In an LCFRS, we can also obtain a derivation tree from the rules

that have been applied:

• Dominance is also determined by the relations between lhs

symbol and rhs symbols of a rule.

• There is a linear order on the terminals. BUT: there is no

linear order on all rhs of rules.

As a convention, we draw a non-terminal A left of a

non-terminal B if the first terminal in the span of A precedes

the first terminal in the span of B.

Grammar Formalisms 6 LCFRS

Basic Ideas (5)

Ex.: LCFRS for {wcwc |w ∈ {a, b}∗}:

S(XY) → T (X, Y) T (aY, aU) → T (Y, U)

T (bY, bU) → T (Y, U) T (c, c) → ε

Derivation tree for aacaac:

S

T

T

T

a a c a a c

Grammar Formalisms 7 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and CL (1)

Interest of LCFRS for CL:

1. Data-driven parsing.

2. Mild context-sensitivity.

3. Equivalence with several important CL formalisms.

Grammar Formalisms 8 LCFRS

LCFRS and CL (2)

Data-driven parsing:

• Just like phrase structure trees (without crossing branches) can

be described with CFG rules, trees with crossing branches can

be described with LCFRS rules.

• Trees with crossing branches allow to describe discontinuous

constituents, as for example in the Negra and Tiger treebanks.

Grammar Formalisms 9 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and CL (3)

Example of a Negra tree with crossing branches:

Grammar Formalisms 10 LCFRS

LCFRS and CL (4)

Trees with crossing branches can be interpreted as LCFRS

derivation trees.

⇒ an LCFRS can be straight-forwardly extracted from such

treebanks. This makes LCFRS particularly interesting for

data-driven parsing.

PROAV(Darüber) → ε

VMFIN(muß) → ε

VVPP(nachgedacht) → ε

VAINF(werden) → ε

S(X1X2X3) → VP(X1,X3) VMFIN(X2)

VP(X1,X2X3) → VP(X1,X2) VAINF(X3)

VP(X1,X2) → PROAV(X1) VVPP(X2)

Grammar Formalisms 11 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and CL (5)

Mild Context-Sensitivity:

• Natural languages are not context-free.

• Question: How complex are natural languages? In other words,

what are the properties that a grammar formalism for natural

languages should have?

• Goal: extend CFG only as far as necessary to deal with natural

languages in order to capture the complexity of natural

languages.

This effort has lead to the definition of mild context-sensitivity

(Aravind Joshi).

Grammar Formalisms 12 LCFRS

LCFRS and CL (6)

A formalism is mildly context-sensitive if the following holds:

1. It generates at least all context-free languages.

2. It can describe a limited amount of crossing dependencies.

3. Its string languages are polynomial.

4. Its string languages are of constant growth.

Grammar Formalisms 13 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and CL (7)

• LCFRS are mildly context-sensitive.

• We do not have any other formalism that is also mildly

context-sensitive and whose set of string languages properly

contains the string languages of LCFRS.

• Therefore, LCFRS are often taken to provide a

grammar-formalism-based characterization of mild

context-sensitivity.

BUT: There are polynomial languages of constant growth that

cannot be generated by LCFRS.

Grammar Formalisms 14 LCFRS

LCFRS and CL (8)

Equivalence with CL formalisms:

LCFRS are weakly equivalent to

• set-local Multicomponent Tree Adjoining Grammar, an

extension of TAG that has been motivated by linguistic

considerations;

• Minimalist Grammar, a formalism that was developed in order

to provide a formalization of a GB-style grammar with

transformational operations such as movement;

• finite-copying Lexical Functional Grammar, a version of LFG

where the number of nodes in the c-structure that a single

f-structure can be related with is limited by a grammar

constant.

Grammar Formalisms 15 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and MCFG (1)

• Multiple Context-Free Grammars (MCFG) have been

introduced by [Seki et al., 1991] while the equivalent Linear

Context-Free Rewriting Systems (LCFRS) were independently

proposed by [Vijay-Shanker et al., 1987].

• The central idea is to extend CFGs such that non-terminal

symbols can span a tuple of strings that need not be adjacent

in the input string.

• The grammar contains productions of the form

A0 → f [A1, . . . , Aq] where A0, . . . , Aq are non-terminals and f

is a function describing how to compute the yield of A0 (a

string tuple) from the yields of A1, . . . , Aq.

• The definition of LCFRS is slightly more restrictive than the

one of MCFG. However, [Seki et al., 1991] have shown that the

two formalisms are equivalent.

Grammar Formalisms 16 LCFRS

LCFRS and MCFG (2)

Example: MCFG/LCFRS for the double copy language.

Rewriting rules:

S → f1[A] A → f2[A] A → f3[A] A → f4[] A → f5[]

Operations:

f1[〈X, Y, Z〉] = 〈XY Z〉 f4[] = 〈a, a, a〉

f2[〈X, Y, Z〉] = 〈aX, aY, aZ〉 f5[] = 〈b, b, b〉

f3[〈X, Y, Z〉] = 〈bX, bY, bZ〉

Grammar Formalisms 17 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and MCFG (3)

Definition 1 (Multiple Context-Free Grammar) A multiple

context-free grammar (MCFG) is a 5-tuple 〈N, T, F, P, S〉 where

• N is a finite set of non-terminals, each A ∈ N has a fan-out

dim(A) ≥ 1, dim(A) ∈ IN;

• T is a finite set of terminals;

• F is a finite set of mcf-functions;

• P is a finite set of rules of the form A0 → f [A1, . . . , Ak] with

k ≥ 0, f ∈ F such that

f : (T ∗)dim(A1) × . . .× (T ∗)dim(Ak) → (T ∗)dim(A0);

• S ∈ N is the start symbol with dim(S) = 1.

A MCFG with maximal non-terminal fan-out k is called a

k-MCFG.

Grammar Formalisms 18 LCFRS

LCFRS and MCFG (4)

Mcf-functions are such that

• each component of the value of f is a concatenation of some

constant strings and some components of its arguments.

• Furthermore, each component of the right-hand side arguments

of a rule is not allowed to appear in the value of f more than

once.

Grammar Formalisms 19 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and MCFG (5)

Definition 2 (mcf-function) f is an mcf-function if there is a

k ≥ 0 and there are di > 0 for 0 ≤ i ≤ k such that f is a total

function from (T ∗)d1 × . . .× (T ∗)dk to (T ∗)d0 such that

• the components of f(~x1, . . . , ~xk) are concatenations of a limited

amount of terminal symbols and the components xij of the ~xi

(1 ≤ i ≤ k, 1 ≤ j ≤ di), and

• the components xij of the ~xi are used at most once in the

components of f(~x1, . . . , ~xk).

A LCFRS is a MCFG where the mcf-functions f are such that the

the components xij of the ~xi are used exactly once in the

components of f(~x1, . . . , ~xk).

Grammar Formalisms 20 LCFRS

LCFRS and MCFG (6)

• We can understand a MCFG as a generative device that

specifies the yields of the non-terminals.

• The language of a MCFG is then the yield of the start symbol

S.

Ex.: LCFRS for the double copy language.

yield(A) = {〈w, w, w〉 |w ∈ {a, b}∗}

yield(S) = {〈www〉 |w ∈ {a, b}∗}

Grammar Formalisms 21 LCFRS

Kallmeyer Sommersemester 2011

LCFRS and MCFG (7)

Definition 3 (String Language of an MCFG/LCFRS)

Let G = 〈N, T, F, P, S〉 be a MCFG/LCFRS.

1. For every A ∈ N :

• For every A → f [] ∈ P , f() ∈ yield(A).

• For every A → f [A1, . . . , Ak] ∈ P with k ≥ 1 and all tuples

τ1 ∈ yield(A1), . . . , τk ∈ yield(Ak), f(τ1, . . . , τk) ∈ yield(A).

• Nothing else is in yield(A).

2. The string language of G is L(G) = {w | 〈w〉 ∈ yield(S)}.

Grammar Formalisms 22 LCFRS

LCFRS with Simple RCG syntax (1)

• Range Concatentation Grammars (RCG) and the restricted

simple RCG have been introduced in [Boullier, 2000].

• Simple RCG are not only equivalent to MCFG and LCFRS but

also represent a useful syntactic variant.

Example: Simple RCG for the double copy language.

S(XY Z) → A(X, Y, Z)

A(aX, aY, aZ) → A(X, Y, Z)

A(bX, bY, bZ) → A(X, Y, Z)

A(a, a, a) → ε

A(b, b, b) → ε

Grammar Formalisms 23 LCFRS

Kallmeyer Sommersemester 2011

LCFRS with Simple RCG syntax (2)

We redefine LCFRS with the simple RCG syntax:

Definition 4 (LCFRS) A LCFRS is a tuple G = (N, T, V, P, S)

where

1. N , T and V are disjoint alphabets of non-terminals, terminals

and variables resp. with a fan-out function dim: N → IN.

S ∈ N is the start predicate; dim(S) = 1.

2. P is a finite set of rewriting rules of the form

A0(~α0) → A1(~x1) · · ·Am(~xm)

with m ≥ 0, ~α0 ∈ [(T ∪ V)∗]dim(A0), ~xi ∈ V dim(Ai) for

1 ≤ i ≤ m and it holds that every variable X ∈ V occurring in

the rule occurs exactly once in the left-hand side and exactly

once in the right-hand side.

Grammar Formalisms 24 LCFRS

LCFRS with Simple RCG syntax (3)

In order to apply a rule, we have to map variables to strings of

terminals:

Definition 5 (LCFRS rule instantiation) Let

G = 〈N, T, V, S, P 〉 be a LCFRS.

For a rule c = A(~α) → A1(~α1) . . .Am(~αm) ∈ P , every function

f : {x | x ∈ V, x occurs in c} → T ∗ is an instantiation of c.

We call A(f(~α)) → A1(f(~α1)) . . .Am(f(~αm)) then an instantiated

clause where f is extended as follows:

1. f(ε) = ε;

2. f(t) = t for all t ∈ T ;

3. f(xy) = f(x)f(y) for all x, y ∈ T ∗;

4. f(〈α1, . . . , αm〉) = (〈f(α1), . . . , f(αm)〉) for all

(〈α1, . . . , αm〉) ∈ [(T ∪ V)∗]m, m ≥ 1.

Grammar Formalisms 25 LCFRS

Kallmeyer Sommersemester 2011

LCFRS with Simple RCG syntax (4)

Definition 6 (LCFRS string language) Let G = 〈N, T, V, S, P 〉

be a LCFRS.

1. The set Lpred(G) of instantiated predicates A(~τ) where A ∈ N

and ~τ ∈ (T ∗)k for some k ≥ 1 is defined by the following

deduction rules:

a)
A(~τ)

A(~τ) → ε is an instantiated clause

b)
A1(~τ1) . . .Am(~τm)

A(~τ)

A(~τ) → A1(~τ1) . . . Am(~τm)

is an instantiated clause

2. The string language of G is

{w ∈ T ∗ |S(w) ∈ Lpred(G)}.

Grammar Formalisms 26 LCFRS

References

[Boullier, 2000] Boullier, P. (2000). Range Concatenation

Grammars. In Proceedings of the Sixth International Workshop

on Parsing Technologies (IWPT2000), pages 53–64, Trento, Italy.

[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami,

T. (1991). On multiple context-free grammars. Theoretical

Computer Science, 88(2):191–229.

[Vijay-Shanker et al., 1987] Vijay-Shanker, K., Weir, D. J., and

Joshi, A. K. (1987). Characterizing structural descriptions

produced by various grammatical formalisms. In Proceedings of

ACL, Stanford.

Grammar Formalisms 27 LCFRS

