# Mildly Context-Sensitive Grammar Formalisms:

# Linear Context-Free Rewriting Systems

Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf

Sommersemester 2011

2

## Basic Ideas (1)

Linear Context-Free Rewriting Systems (LCFRS) can be conceived as a natural extension of CFG:

- In a CFG, non-terminal symbols A can span single strings, i.e., the language derivable from A is a subset of T<sup>\*</sup>.
- Extension to LCFRS: non-terminal symbols A can span tuples of (possibly non-adjacent) strings, i.e., the language derivable from A is a subset of  $(T^*)^k$
- $\Rightarrow$  LCFRS displays an extended domain of locality

| Grammar Formalisms       | 1        | LCFRS              | Grammar Formalisms      | 3          | LCFRS                 |
|--------------------------|----------|--------------------|-------------------------|------------|-----------------------|
| Kallmeyer                | S        | ommersemester 2011 | Kallmeyer               |            | Sommersemester 2011   |
|                          |          |                    | Basic Ideas (2)         |            |                       |
|                          |          |                    | Different spans in CFG  | and LCFRS: |                       |
|                          |          |                    |                         | LCFRS:     |                       |
| Overview                 |          |                    | CFG:                    |            | , i                   |
| 1. Basic Ideas           |          |                    | /                       | A          |                       |
| 2. LCFRS and CL          |          |                    | $\angle_{A}$            |            |                       |
| 3. LCFRS and MCFG        |          |                    |                         |            |                       |
| 4. LCFRS with Simple RCG | l syntax |                    | $\frac{\gamma}{\gamma}$ | $\gamma_1$ | $\gamma_2 / \gamma_3$ |
|                          |          |                    |                         | /\         | /\                    |
|                          |          |                    |                         |            |                       |
|                          |          |                    |                         |            |                       |

Grammar Formalisms

#### Basic Ideas (3)

Example for a non-terminal with a yield consisting of 2 components:

 $yield(A) = \langle a^n b^n, c^n d^n \rangle$ , with  $n \ge 1$ .

The rules in an LCFRS describe how to compute an element in the yield of the lefthand-side (lhs) non-terminal from elements in the yields of the right-hand side (rhs) non-terminals.

Ex.:  $A(ab, cd) \rightarrow \varepsilon$   $A(aXb, cYd) \rightarrow A(X, Y)$ 

The start symbol  ${\cal S}$  is of dimension 1, i.e., has single strings as yield elements.

Ex.:  $S(XY) \to A(X, Y)$ 

5

Language generated by this grammar (yield of S):  $\{a^nb^nc^nd^n\,|\,n\geq 1\}.$ 

Grammar Formalisms

LCFRS

#### Kallmeyer

Sommersemester 2011

#### Basic Ideas (4)

- In a CFG derivation tree (parse tree), dominance is determined by the relations between lhs symbol and rhs symbols of a rule.
- Furthermore, there is a linear order on the terminals and on all rhs of rules.

In an LCFRS, we can also obtain a derivation tree from the rules that have been applied:

- Dominance is also determined by the relations between lhs symbol and rhs symbols of a rule.
- There is a linear order on the terminals. BUT: there is no linear order on all rhs of rules.

As a convention, we draw a non-terminal A left of a non-terminal B if the first terminal in the span of A precedes the first terminal in the span of B.

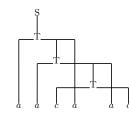
6

LCFRS

## Basic Ideas (5)

$$\begin{split} & \text{Ex.: LCFRS for } \{wcwc \, | \, w \in \{a,b\}^*\}: \\ & S(XY) \to T(X,Y) \qquad T(aY,aU) \to T(Y,U) \\ & T(bY,bU) \to T(Y,U) \qquad T(c,c) \to \varepsilon \end{split}$$

Derivation tree for *aacaac*:



7

Grammar Formalisms

LCFRS

| Kallmeyer | Sommersemester 2011 |
|-----------|---------------------|
|-----------|---------------------|

## LCFRS and CL (1)

Interest of LCFRS for CL:

- 1. Data-driven parsing.
- 2. Mild context-sensitivity.
- 3. Equivalence with several important CL formalisms.

8

LCFRS

## LCFRS and CL (2)

## Data-driven parsing:

- Just like phrase structure trees (without crossing branches) can be described with CFG rules, trees with crossing branches can be described with LCFRS rules.
- Trees with crossing branches allow to describe discontinuous constituents, as for example in the Negra and Tiger treebanks.

9

## LCFRS and CL (4)

Trees with crossing branches can be interpreted as LCFRS derivation trees.

 $\Rightarrow$  an LCFRS can be straight-forwardly extracted from such treebanks. This makes LCFRS particularly interesting for data-driven parsing.



11

Grammar Formalisms

LCFRS

Sommersemester 2011

| Kall | meyer |
|------|-------|

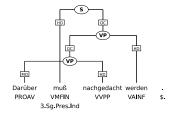
Grammar Formalisms

Sommersemester 2011

LCFRS

#### LCFRS and CL (3)

Example of a Negra tree with crossing branches:



10

# Kallmeyer

## LCFRS and CL (5)

## Mild Context-Sensitivity:

- Natural languages are not context-free.
- Question: How complex are natural languages? In other words, what are the properties that a grammar formalism for natural languages should have?
- Goal: extend CFG only as far as necessary to deal with natural languages in order to capture the complexity of natural languages.

This effort has lead to the definition of *mild context-sensitivity* (Aravind Joshi).

12

## LCFRS and CL (6)

A formalism is mildly context-sensitive if the following holds:

- 1. It generates at least all context-free languages.
- 2. It can describe a limited amount of crossing dependencies.
- 3. Its string languages are polynomial.
- 4. Its string languages are of constant growth.

```
Grammar Formalisms 13
```

#### Kallmeyer

Sommersemester 2011

LCFRS

## LCFRS and CL (7)

- LCFRS are mildly context-sensitive.
- We do not have any other formalism that is also mildly context-sensitive and whose set of string languages properly contains the string languages of LCFRS.
- Therefore, LCFRS are often taken to provide a grammar-formalism-based characterization of mild context-sensitivity.

BUT: There are polynomial languages of constant growth that cannot be generated by LCFRS.

14

#### Grammar Formalisms

LCFRS

## LCFRS and CL (8)

## Equivalence with CL formalisms:

LCFRS are weakly equivalent to

- set-local Multicomponent Tree Adjoining Grammar, an extension of TAG that has been motivated by linguistic considerations;
- *Minimalist Grammar*, a formalism that was developed in order to provide a formalization of a GB-style grammar with transformational operations such as movement;
- *finite-copying Lexical Functional Grammar*, a version of LFG where the number of nodes in the c-structure that a single f-structure can be related with is limited by a grammar constant.

15

Grammar Formalisms

LCFRS

#### Kallmeyer

#### Sommersemester 2011

## LCFRS and MCFG (1)

- Multiple Context-Free Grammars (MCFG) have been introduced by [Seki et al., 1991] while the equivalent Linear Context-Free Rewriting Systems (LCFRS) were independently proposed by [Vijay-Shanker et al., 1987].
- The central idea is to extend CFGs such that non-terminal symbols can span a tuple of strings that need not be adjacent in the input string.
- The grammar contains productions of the form  $A_0 \to f[A_1, \ldots, A_q]$  where  $A_0, \ldots, A_q$  are non-terminals and f is a function describing how to compute the yield of  $A_0$  (a string tuple) from the yields of  $A_1, \ldots, A_q$ .
- The definition of LCFRS is slightly more restrictive than the one of MCFG. However, [Seki et al., 1991] have shown that the two formalisms are equivalent.

16

Grammar Formalisms

## LCFRS and MCFG (2)

Example: MCFG/LCFRS for the double copy language.

Rewriting rules:

 $S \to f_1[A] \qquad A \to f_2[A] \qquad A \to f_3[A] \qquad A \to f_4[\ ] \qquad A \to f_5[\ ]$ 

Operations:

$$\begin{split} f_1[\langle X,Y,Z\rangle] &= \langle XYZ\rangle & f_4[\ ] = \langle a,a,a\rangle \\ f_2[\langle X,Y,Z\rangle] &= \langle aX,aY,aZ\rangle & f_5[\ ] = \langle b,b,b\rangle \\ f_3[\langle X,Y,Z\rangle] &= \langle bX,bY,bZ\rangle \end{split}$$

## LCFRS and MCFG (4)

Mcf-functions are such that

- each component of the value of f is a concatenation of some constant strings and some components of its arguments.
- Furthermore, each component of the right-hand side arguments of a rule is not allowed to appear in the value of f more than once.

| Grammar Formalisms                                                                                                                            | 17 | LCFRS               | Grammar Formalisms                                                                                                                                                                                                                             | 19 LCFI           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Kallmeyer                                                                                                                                     |    | Sommersemester 2011 | Kallmeyer                                                                                                                                                                                                                                      | Sommersemester 20 |
| LCFRS and MCFG (3)                                                                                                                            |    |                     | LCFRS and MCFG (5)                                                                                                                                                                                                                             |                   |
| <b>Definition 1 (Multiple Context-Free Grammar)</b> A multiple context-free grammar (MCFG) is a 5-tuple $\langle N, T, F, P, S \rangle$ where |    |                     | <b>Definition 2 (mcf-function)</b> $f$ is an mcf-function if there is a $k \ge 0$ and there are $d_i > 0$ for $0 \le i \le k$ such that $f$ is a total function from $(T^*)^{d_1} \times \ldots \times (T^*)^{d_k}$ to $(T^*)^{d_0}$ such that |                   |
| • N is a finite set of non-terminals, each $A \in N$ has a fan-out                                                                            |    |                     |                                                                                                                                                                                                                                                |                   |

- the components of f(x<sub>i</sub><sup>-</sup>,...,x<sub>k</sub><sup>-</sup>) are concatenations of a limited amount of terminal symbols and the components x<sub>ij</sub> of the x<sub>i</sub><sup>-</sup> (1 ≤ i ≤ k, 1 ≤ j ≤ d<sub>i</sub>), and
- the components x<sub>ij</sub> of the x<sub>i</sub> are used at most once in the components of f(x<sub>1</sub>,...,x<sub>k</sub>).

A LCFRS is a MCFG where the mcf-functions f are such that the the components  $x_{ij}$  of the  $\vec{x_i}$  are used exactly once in the components of  $f(\vec{x_1}, \ldots, \vec{x_k})$ .

20

k-MCFG.

 $dim(A) \ge 1, dim(A) \in \mathbb{N};$ 

• T is a finite set of terminals;

 $k \geq 0, f \in F$  such that

• F is a finite set of mcf-functions;

• P is a finite set of rules of the form  $A_0 \to f[A_1, \ldots, A_k]$  with

18

 $f: (T^*)^{dim(A_1)} \times \ldots \times (T^*)^{dim(A_k)} \to (T^*)^{dim(A_0)}$ :

A MCFG with maximal non-terminal fan-out k is called a

•  $S \in N$  is the start symbol with dim(S) = 1.

#### Grammar Formalisms

LCFRS

## LCFRS and MCFG (6)

- We can understand a MCFG as a generative device that specifies the yields of the non-terminals.
- The language of a MCFG is then the yield of the start symbol S.

Ex.: LCFRS for the double copy language.

 $yield(A) = \{ \langle w, w, w \rangle \mid w \in \{a, b\}^* \}$  $yield(S) = \{ \langle www \rangle \mid w \in \{a, b\}^* \}$ 

| Grammar Formalisms | 21 |  |
|--------------------|----|--|
|                    |    |  |

Kallmeyer

Sommersemester 2011

LCFRS

## LCFRS and MCFG (7)

Definition 3 (String Language of an MCFG/LCFRS)

Let  $G = \langle N, T, F, P, S \rangle$  be a MCFG/LCFRS.

## 1. For every $A \in N$ :

- For every  $A \to f[] \in P, f() \in yield(A)$ .
- For every  $A \to f[A_1, \ldots, A_k] \in P$  with  $k \ge 1$  and all tuples  $\tau_1 \in yield(A_1), \ldots, \tau_k \in yield(A_k), f(\tau_1, \ldots, \tau_k) \in yield(A).$
- Nothing else is in yield(A).

```
2. The string language of G is L(G) = \{w \mid \langle w \rangle \in yield(S)\}.
```

22

#### LCFRS with Simple RCG syntax (1)

- Range Concatentation Grammars (RCG) and the restricted simple RCG have been introduced in [Boullier, 2000].
- Simple RCG are not only equivalent to MCFG and LCFRS but also represent a useful syntactic variant.

## Example: Simple RCG for the double copy language.

$$\begin{split} S(XYZ) &\to A(X,Y,Z) \\ A(aX,aY,aZ) &\to A(X,Y,Z) \\ A(bX,bY,bZ) &\to A(X,Y,Z) \\ A(a,a,a) &\to \varepsilon \\ A(b,b,b) &\to \varepsilon \end{split}$$

Grammar Formalisms

LCFRS

| Kallmeyer | Sommersemester 2011 |
|-----------|---------------------|
|           |                     |

23

## LCFRS with Simple RCG syntax (2)

We redefine LCFRS with the simple RCG syntax:

**Definition 4 (LCFRS)** A LCFRS is a tuple G = (N, T, V, P, S)where

 N, T and V are disjoint alphabets of non-terminals, terminals and variables resp. with a fan-out function dim: N → N.
S ∈ N is the start predicate; dim(S) = 1.

2. P is a finite set of rewriting rules of the form

 $A_0(\vec{\alpha_0}) \to A_1(\vec{x_1}) \cdots A_m(\vec{x_m})$ 

with  $m \ge 0$ ,  $\vec{\alpha_0} \in [(T \cup V)^*]^{dim(A_0)}$ ,  $\vec{x_i} \in V^{dim(A_i)}$  for  $1 \le i \le m$  and it holds that every variable  $X \in V$  occurring in the rule occurs exactly once in the left-hand side and exactly once in the right-hand side.

24

## LCFRS with Simple RCG syntax (3)

In order to apply a rule, we have to map variables to strings of terminals:

### Definition 5 (LCFRS rule instantiation) Let

 $G = \langle N, T, V, S, P \rangle$  be a LCFRS.

For a rule  $c = A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \dots A_m(\vec{\alpha_m}) \in P$ , every function  $f : \{x \mid x \in V, x \text{ occurs in } c\} \to T^*$  is an instantiation of c.

We call  $A(f(\vec{\alpha})) \to A_1(f(\vec{\alpha_1})) \dots A_m(f(\vec{\alpha_m}))$  then an instantiated clause where f is extended as follows:

1. 
$$f(\varepsilon) = \varepsilon;$$

2. 
$$f(t) = t$$
 for all  $t \in T$ ;

3. 
$$f(xy) = f(x)f(y)$$
 for all  $x, y \in T^*$ ;

4.  $f(\langle \alpha_1, \dots, \alpha_m \rangle) = (\langle f(\alpha_1), \dots, f(\alpha_m) \rangle)$  for all  $(\langle \alpha_1, \dots, \alpha_m \rangle) \in [(T \cup V)^*]^m, \ m \ge 1.$ 

Grammar Formalisms

LCFRS

#### Kallmeyer

Sommersemester 2011

## LCFRS with Simple RCG syntax (4)

# **Definition 6 (LCFRS string language)** Let $G = \langle N, T, V, S, P \rangle$ be a LCFRS.

25

 The set L<sub>pred</sub>(G) of instantiated predicates A(τ) where A ∈ N and τ ∈ (T\*)<sup>k</sup> for some k ≥ 1 is defined by the following deduction rules:

a) 
$$A(\vec{\tau}) \to \varepsilon$$
 is an instantiated claus  $A(\vec{\tau})$ 

b) 
$$\frac{A_1(\vec{\tau_1})\dots A_m(\vec{\tau_m})}{A(\vec{\tau})} \qquad \begin{array}{c} A(\vec{\tau}) \to A_1(\vec{\tau_1})\dots A_m(\vec{\tau_m})\\ \text{ is an instantiated clause} \end{array}$$

2. The string language of G is

$$\{w \in T^* \mid S(w) \in L_{pred}(G)\}.$$

26

Grammar Formalisms

LCFRS

# References

- [Boullier, 2000] Boullier, P. (2000). Range Concatenation Grammars. In Proceedings of the Sixth International Workshop on Parsing Technologies (IWPT2000), pages 53–64, Trento, Italy.
- [Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. *Theoretical Computer Science*, 88(2):191–229.
- [Vijay-Shanker et al., 1987] Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural descriptions produced by various grammatical formalisms. In *Proceedings of ACL*, Stanford.

27

Grammar Formalisms

LCFRS