Computational Semantics with Haskell

Yulia Zinova

Winter 2016/2017

We follow Van Eijck and Unger 2010, electronic access from the library

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

What next

Overview

» We will talk about some example languages:
» languages for playing simple games
» logical languages
» fragments of programming languages
» fragments of natural language
» When we will be dealing with the semantics of natural languages, we will
use predicate logic.

» As a preparation, we will have a look at the propositional and predicate
logic: how they can be used to represent the meaning of natural
language sentences and how to implement their syntax in Haskell.

» Download this file:
http://www.computational-semantics.eu/FSynF.hs

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

http://www.computational-semantics.eu/FSynF.hs

Sea Battle

> Rules:

1. 2 players

2. 2 grids per player, each with 10 x 10 fields: 1 — 10 and A - J

3. players do not see each others’ grids
4. at the beginning, each player distributes their ships over one of the grids
5. fleet: a battleship (5 squares), a frigate (4 squares), two submarines (3

squares), a destroyer (2 squares).

the grid with ships is also used to record enemy shots

the other grid is used to record shots fired at the enemy

~No

winter 201672017 We follow Van

Computational Semantics with Haskell / 24

Sea Battle: Grammar

>

>

column - A/B|C|/D|E|F|G|H]I]J
row—1/2/3/4/5]/6]7]/8]9]10

attack — column row

ship — battleship | fregate | submarine | destroyer
reaction — missed | hit ship | sunk ship | lost battle
turn — arrack reaction

Exercise: revise the grammar in such a way that it is explicit that the game
ends once one of the players is defeated.

winter 201672017 We follow Van

Computational Semantics with Haskell / 24

Grammars for Games

Mastermind

» Mastermind is a code-breaking game for two players
» Code-maker decides on a row of coloured pegs (fixed set of colours)
» Code-breaker tries to guess the color pattern

» Each turn: codebreaker names a sequence; codemaker replies with black
for each correct colour-place combination and with white for each correct
colour in the wrong place.

» Goal :find out the sequence

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

Grammars for Games

Mastermind: Grammar

>

>

colour — red | yellow | green | lila | blue | orange
answer — black | white

guess — colour colour colour colour

reaction — {answer}

turn — guess reaction

game — turn | turn game

Exercise: revise the grammar in order to guarantee that a game has at
most 4 turns

Exercise: change the definition of reaction to ensure that the grammar
generates a finite language

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

Grammars for Games

Grammars for Games: Exercises

» Write the grammar for chess.

» Write the grammar for Bingo!
» Bingo rules:
> A bingo ticket is a card with a 5x5 grid. 5 columns on the card correspond
to 5 letters of the name of the game "B-I-N-G-O".
» 24 numbers per each card are random from the limits of 1 to 75. The
center of the card is left empty.
» B column: from 1 to 15, | column: from 16 to 30, N column: from 31 to
45, G column: from 46 to 60, O column: from 61 to 75
» Round: the caller selects a random number and calls it. All the players
mark it on their tickets.
» The winner is determined when one or several of the players complete the
winning bingo pattern.

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

A fregment of English

» We want to write rules for English sentences like the following
» The girl laughed.

» No dwarf admired some princess that shuddered.

» Every girl some boy loved cheered.

» The wizard that helped Snow White defeated the giant.

» We need rules for: subject-predicate structure of sentences, internal
structure of noun phrases, common nouns with and without relative
clauses.

» Let us write the grammar!

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

A Fragment of English

A language of talking about classes

» Consider the following interaction engine for an inference engine
(program the handles interaction with a knowledge base):

» Questions (or queries) are of the form: Are all PN PN? Are no PN PN?
Are any PN PN? Are any PN not PN? What about PN?

» Statements are of the form: All PN are PN. No PN are PN. Some PN
are PN. Some PN are not PN.

» PN = plural noun

» We will later provide a semantics for this fragment so that it could be
used.

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

Propositional Logic

Propositional logic

» No we will look at a grammar for propositional logic, where we use p, g,
r,p,q,r, p"q" r' .. toindicate atomic propositions

» atom — p| g | r | atom
» F—satom |- F|(FVF)|(FAF)

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Propositional Logic

Principle of structural induction

» |If you need to prove that every formula of propositional logic has
property P, you need to use induction

» Induction base: Every atom has property P

» Induction step: If F has property P, so does — F, if F; and F> have
property P, then so do (F1 V F2) and (F1 A Fp)

» Exercise: Show that every propositional formula has an equal number of
left and right parenthesis

» Exercise: Show that propositional formulas have only one parse tree

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

Propositional Logic

Making life easier

v

The ‘official’ way of writing propositional formulas is a bit clumsy

v

We will use p; instead of p”

v

We will often omit parenthesis when it does not result in ambiguity
(conjunction and disjunction)

v

2 abbreviations: implication and equivalence:

v

Implication: write F; — F, for =(F1 A —F3)

v

Equivalence: write Fy <> F, for (F —) A (F2 — F1)

winter 201672017 We follow Van

Computational Semantics with Haskell / 24

Propositional Logic

Translating from natural language to propositional logic

» [f it rains and the sun is shining, then there will be a rainbow.

» The wizard polishes his hand and learns a new spell, or he is lazy.

» The wizard will deal with the devil only if he has a plan to outwit him.
» If neither unicorns nor dragons exist, then neither do goblins.

» You can either have ice cream or candy floss, but not both.

» Define a connective @ for exclusive disjunction using the already defined
connectives.

winter 201672017 We follow Van

Computational Semantics with Haskell / 24

Propositional Logic

Polish notation

» Formulas of propositional logic can be written without parenthesis, if we
use prefix or postfix notation.

» Prefix notation is also called Polish notation.
» F —» atom | - F | VFF | AFF
» Exercise: translate AV pgr into infix notation

» Exercise: use the principle of structural induction to prove that formulas
of propositional logic in infix notation are uniquely readable

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

Propositional Logic

Haskell implementation

» Exercise: Implement a function countOperations for computing a number
of operations in the formula

» Exercise: Implement a function listAtoms that collects the names of
propositional atoms that occur in a formula.

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

Predicate logic

» In propositional logic, the following two sentences will be not related:

1. Every prince saw a lady
2. Some prince saw a beautiful lady

» To capture the internal structure of such sentences, we need predicate
logic.

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

Predicate logic aka first-order (predicate) logic

» Predicate logic is an extension of propositional logic with structured basic
propositions and quantifications:

1.

A structured basic proposition consists of an n-ary predicate followed with n
variables.

A universally quantified formula consists of the symbol V followed by a
variable followed by a formula.

An existentially quantified formula consists of the symbol 3 followed by a
variable followed by a formula.

Other ingredients are as in propositional logic

winter 201672017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

Predicate logic: definition

» Definition in assumption that predicates have arity not more than 3:
vox|yl|lz|Vv

PoP|P
R—RI|R
S+S|S

atom - Pv|Rvv|Svvyv
Fatom|(v=v)|-F|FAF|FVF|VVvF|3VvF

» Polll http://directpoll.com/r?
XDbzPBd3ixYqg8pA3St08d1ir(61HSOWJ1Pc1hli

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

http://directpoll.com/r?XDbzPBd3ixYqg8pA3St08d1irQ6lHS0WJlPc1h1i
http://directpoll.com/r?XDbzPBd3ixYqg8pA3St08d1irQ6lHS0WJlPc1h1i

Predicate logic

Bound variables

» In a formula VxF (or 3xF), the quantifier occurrence binds all
occurrences of x in F that are not bound by an occurrence of Vx or Ix
inside F.

» Syntactic definition:an occurrence of Vx or dx in a formula F binds an
occurrence of x in F if in the syntax tree for F the occurrence ¥x (or 3x)
c-commands x, and inside F there are no other occurrences of Vx or Ix
that c-command x.

» A predicate logic formula is called open if it contains at least one variable
occurrence which is free. If all variable occurrences are bound, the
formula is called closed/a predicate logical sentence.

winter 20162017 We folfow Vah

Computational Semantics with Haskell / 24

Predicate logic

Predicate logic

» Exercise: write a formula that represents the following sentences:

1. Some prince saw a beautiful lady.
2. Every prince saw a lady.

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

Predicate logic formulas in Haskell

» We will combine predicates with lists of variables — flexible arity
vox|y|lz|Vv
vlist — [] | v: vlist
P—P|P
atom — P vlist
F—atom|v=v |- F|AFlist|VFlist VvF|3VvF
Flist — [] | F: Flist

winter 2016/2017 We follow Van
Computational Semantics with Haskell / 24

Predicate logic

Predicate logic formulas in Haskell: Exercises

» Write a function sentence that checks whether a formula is a sentence.

» Write a function noNegImpl that replaces each formula by an equivalent
one without occurrences of Impl and Neg

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

Predicate logic

References:

Van Eijck, J. and Unger, C. (2010). Computational semantics with
functional programming. Cambridge University Press.

winter 2016/2017 We follow Van

Computational Semantics with Haskell / 24

	What next
	Grammars for Games
	A Fragment of English
	Propositional Logic
	Predicate logic

