A set-theoretical investigation of Pāņini's Śivasūtras

Wiebke Petersen Institute of Language and Information Department of Computational Linguistics University of Düsseldorf

Pāņini's Śivasūtras

anubandha

1.	a	i	u			Ņ
2.				ŗ	1	K
3.		е	0			Ň
4.		ai	au			С
5.	h	У	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	Μ
8.	jh	bh				Ñ
9.			gh	ḍh	dh	Ş
10.	j	b	g	ġ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Y
13.		Ś	ş	S		R
14.	h					L

sūtras

sef here

SEL DORI

DÜ

Wiebke Petersen MOL 8

Pāņini's Śivasūtras

anubandha

	1.	a	i	u			Ņ
	2.				ŗ	1	K
	3.		е	0	-	-	Ń
	4.		ai	au			С
	5.	h	У	v	r		Ţ
sūtras	6.					1	Ņ
	7.	ñ	m	'n	ņ	n	M
	8.	jh	bh				Ñ
	9.			gh	dh	dh	Ş
	10.	j	b	g	ģ	d	Ś
	11.	kh	ph	ch	ţĥ	th	
				С	ţ	t	V
	12.	k	р				Y
	13.		ś	Ş	S		R
	14.	h					L
invert here -							

DÜ

SSELDORI

Wiebke Petersen MOL 8

Phonological classes/ pratyāhāras

1.	a	i	u			Ņ
2.				ŗ	1	K
3.		е	0			Ń
4.		ai	au			С
5.	h	у	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ

Phonological classes are denoted by *pratyāhāras*. E.g., the *pratyāhāra i*C denotes the set of segments in the continuous sequence starting with *i* and ending with *au*, the last element before the *anubandha C*.

Phonological classes/ pratyāhāras

1.	a	i	u			Ņ
2.				ŗ	1	K
3.		е	0			Ń
4.		ai	au			C
5.	h	у	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
	•		iC			

Phonological classes are denoted by pratyāhāras.

E.g., the *pratyāhāra iC* denotes the set of segments in the continuous sequence starting with *i* and ending with *au*, the last element before the *anubandha C*.

Phonological classes/ pratyāhāras

Phonological classes are denoted by pratyāhāras.

E.g., the *pratyāhāra iC* denotes the set of segments in the continuous sequence starting with *i* and ending with *au*, the last element before the *anubandha C*.

Questions around Pāņini's Śivasūtras

- Are Pāņini's Śivasūtras perfect?
 - Is the number of stop markers minimal?
 - Is the duplication of 'h' necessary?
- Is it possible to decide whether a set of sets has a Śivasūtras-style representation?
- How to construct an optimal Śivasūtrasstyle representation?

S-encodable set of sets: $\Phi = \{ \{d, e\}, \{b, c, d, f, g, h, i\}, \{a, b\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\} \}$

S-encodable set of sets:

 $\Phi = \{ \{d,e\}, \{b,c,d,f,g,h,i\}, \{a,b\}, \{f,i\}, \{c,d,e,f,g,h,i\}, \{g,h\} \}$

S-alphabet $(\mathcal{A}, \Sigma, <)$ of Φ : alphabet marker total order on $\mathcal{A} \cup \Sigma$

e d
$$M_1$$
 c i f M_2 g h M_3 b M_4 a M_5

S-encodable set of sets:

 $\Phi = \{ \{d,e\}, \{b,c,d,f,g,h,i\}, \{a,b\}, \{f,i\}, \{c,d,e,f,g,h,i\}, \{g,h\} \}$

S-encodable set of sets:

 $\Phi = \{ \{d,e\}, \{b,c,d,f,g,h,i\}, \{a,b\}, \{f,i\}, \{c,d,e,f,g,h,i\}, \{g,h\} \}$

If Φ is S-encodable, then the Hasse-diagram of $(\mathcal{H}(\Phi), \supseteq)$ is planar

If Φ is S-encodable, then the Hasse-diagram of $(\mathcal{H}(\Phi), \supseteq)$ is planar

Hasse-diagram for Pānini's pratyāhāras

Criterion of Kuratowski: A graph is planar iff it has neither K_5 nor $K_{3,3}$ as a *minor*.

Wiebke Petersen MOL 8

We are not done yet!

Existence of S-alphabets

An S-alphabet of Φ exists iff

1. a plane Hasse-diagram for $(\mathcal{H}(\Phi),\supseteq)$ exists and

2. for every $b \in \mathcal{A}$ the S-graph contains a node labeled with b

DÜ

SELDORI

SELDORI

SELDORI

Pāņini's Śivasūtras are perfect

Pāņini's Śivasūtras are perfect

Wiebke Petersen MOL 8

Pāņini's Śivasūtras are perfect

Wiebke Petersen MOL 8