Frames – A General Formal of Representations?

Kogwis 2010 Symposium

Potsdam

Kogwis 2010 Symposium Frames – A General Formal of Representations?

Formal Frame Theory for Concept Composition and Decomposition

Wiebke Petersen

Heinrich-Heine-Universität Düsseldorf www.phil-fak.uni-duesseldorf.de/~petersen/

6.10.2010, Potsdam

frames

Frames

0000

Barsalou (1992) Frames, Concepts, and Conceptual Fields

- Frames provide the fundamental representation of knowledge in human cognition.
- At their core, frames contain attribute-value sets.
- Frames further contain a variety of relations.
 - **Structural invariants** in a frame capture relations in the world that tend to be relatively constant between attributes.
 - **Constraints** capture systematic patterns of variability between attribute values.

attributes

composition

Example: vacation frame with constraints (Barsalou 1992)

unlimited recursion in frames

Self-similarity in Barsalou's frames (attributes are frames):

Recursion in classical feature structure theories:

attributes

composition

frames as generalized typed feature structures

Typed feature structures (Carpenter 1992)

Typed feature structures are connected directed graphs with

- one central node
- nodes labeled with types
- arcs labeled with attributes
- no node with two outgoing arcs with the same label
- and such that each node can be reached from the central node via directed arcs.

attributes

composition

frames as generalized typed feature structures

Frames (Petersen 2007)

Frames

are connected directed graphs with

- one central node
- nodes labeled with types
- arcs labeled with attributes
- no node with two outgoing arcs with the same label

Open argument nodes are marked as rectangular nodes.

Frames relate to unrooted feature structures.

Frames
0000

attributes

composition

type signatures and constraints

redundancy in attribute and type labeling

Frames
0000

attributes

composition

type signatures and constraints

redundancy in attribute and type labeling

Barsalou, 1992

"I define an attribute as a **concept** that describes an aspect of at least some category member." "Values are subordinate concepts of an attribute."

Guarino, 1992: Concepts, attributes and arbitrary relations

"We define attributes as **concepts** having an associate relational interpretation, allowing them to act as conceptual components as well as concepts on their own."

interpretation of fu	Inctional concepts	
0000		000
Frames	attributes	composition

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to 2^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to 2^{\mathcal{U} \times \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho(\text{mother})$, then $m \in \delta(\text{mother})$.

interpretation of fu	Inctional concepts	
0000		000
Frames	attributes	composition

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to 2^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} \times \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \rho(\text{mother})$, then $m \in \delta(\text{mother})$.

Frames	attributes	composition	
0000	oo●ooooo	000	
nterpretation of functional concepts			

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to 2^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} \times \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \rho$ (mother), then $m \in \delta$ (mother).

thesis:

Attributes in frames are relationally interpreted functional concepts!

- attributes are not frames themselves
- attributes are unstructured
- the possible values of an attribute are subconcepts of the denotationally interpreted functional concept

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial. The attribute set should be a subset of the type set: $\mathcal{ATTR} \subseteq \mathcal{TYPE}$.

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial. The attribute set should be a subset of the type set: $\mathcal{ATTR} \subseteq \mathcal{TYPE}$.

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial. The attribute set should be a subset of the type set: $ATTR \subseteq TYPE$.

Frames	attributes	composition
0000	0000000	000

type signature

Barsalou, 1992: Frames, Concepts, and Conceptual Fields

"I define an attribute as a **concept** that describes an aspect of at least some category member."

"Values are subordinate concepts of an attribute."

Frames 0000	attributes oooooo●o	composition
attributes in frames		

Frames 0000	attributes ○○○○○●○	composition
attributes in frames		

Frames 0000	attributes ooooooooo	composition
attributes in frames		

Frames 0000	attributes oooooo●o	composition
attributes in frames		

Frames 0000	attributes ooooooooo	composition
attributes in frames		

Frames 0000	attributes oooooo●o	composition
attributes in frames		

Frames 0000	attributes oooooo●o	composition
attributes in frames		

Frames	attributes	
0000	0000000	
· · · · · · · · · · · · · · · · · · ·		

alternative thesis:

$$\Rightarrow \quad \mathcal{TYPE} = \bigcup_{A \subseteq \mathcal{ATTR}} \cap A$$

attributes

composition ○●○

$\textbf{FC} \stackrel{\textbf{OF}}{\sqcup} \textbf{RC} \mapsto \textbf{RC: name OF sibling}$

 $\begin{array}{l} \lambda y' \lambda x'. \ x' = f(y') \stackrel{\mathsf{OF}}{\sqcup} \lambda y' \lambda x'. \ S(x', y') \mapsto \lambda y' \lambda x. \ x = f(\varepsilon u. \ S(u, y')) \\ \mathsf{FC} \circ (\varepsilon \circ \mathsf{RC}) \\ \langle e, \langle e, t \rangle \rangle \circ (\langle \langle e, t \rangle, e \rangle \circ \langle e, \langle e, t \rangle \rangle) \mapsto \langle e, \langle e, t \rangle \rangle \circ \langle e, e \rangle \mapsto \langle e, \langle e, t \rangle \rangle \end{array}$

attributes

composition

$\textbf{FC} \stackrel{\textbf{OF}}{\sqcup} \textbf{RC} \mapsto \textbf{RC: name OF sibling}$

 $\lambda y' \lambda x'. x' = f(y') \stackrel{\mathsf{OF}}{\sqcup} \lambda y' \lambda x'. S(x', y') \mapsto \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$

FC o(co RC)

 $\langle e, \langle e, t \rangle \rangle \circ (\langle \langle e, t \rangle, e \rangle \circ \langle e, \langle e, t \rangle \rangle) \mapsto \langle e, \langle e, t \rangle \rangle \circ \langle e, e \rangle \mapsto \langle e, \langle e, t \rangle \rangle$

 $\underbrace{\bullet}_{\lambda y'} \varepsilon \circ \operatorname{RC:} \lambda y'(\lambda Q, \varepsilon u, Q(u)(\lambda x', S(x', y'))) \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x', S(x', y')(u)) \rightarrow_{\beta} \lambda y', \varepsilon u, S(u, y') \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x', S(x', y')(u)) \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x') \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x')$

2 FC $\circ(\varepsilon \circ \text{RC})$: $(\lambda y \lambda x. x = f(y)) \circ (\lambda y'.\varepsilon u. S(u, y')) \rightarrow \lambda y'(\lambda y \lambda x. x = f(y)(\varepsilon u. S(u, y'))) \rightarrow_{\beta} \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$

attributes

$\textbf{FC} \stackrel{\textbf{OF}}{\sqcup} \textbf{RC} \mapsto \textbf{RC: name OF sibling}$

 $\lambda y' \lambda x'. x' = f(y') \stackrel{\mathsf{OF}}{\sqcup} \lambda y' \lambda x'. S(x', y') \mapsto \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$

FC ∘(ε∘ RC)

 $\langle e, \langle e, t \rangle \rangle \circ (\langle \langle e, t \rangle, e \rangle \circ \langle e, \langle e, t \rangle \rangle) \mapsto \langle e, \langle e, t \rangle \rangle \circ \langle e, e \rangle \mapsto \langle e, \langle e, t \rangle \rangle$

 $\underbrace{\bullet}_{\lambda y'} \varepsilon \circ \operatorname{RC:} \lambda y'(\lambda Q, \varepsilon u, Q(u)(\lambda x', S(x', y'))) \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x', S(x', y')(u)) \rightarrow_{\beta} \lambda y', \varepsilon u, S(u, y') \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x', S(x', y')(u)) \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x') \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x')$

2 FC $\circ(\varepsilon \circ \text{RC}): (\lambda y \lambda x. x = f(y)) \circ (\lambda y'.\varepsilon u. S(u, y')) \rightarrow \lambda y'(\lambda y \lambda x. x = f(y)(\varepsilon u. S(u, y'))) \rightarrow_{\beta} \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$

- *Linguistics*: Frames, concept types and type shifts: the case of associative anaphora (Alexander Ziem)
- History of medicine: Evolution of Theories and Concepts (Heiner Fangerau)
- Philosophy: Grounded cognition: sensorimotor values in frames (Gottfried Vosgerau)