On the Construction of Śivasūtra-Alphabets

Wiebke Petersen
Institute of Language and Information
University of Düsseldorf, Germany
petersew@uni-duesseldorf.de
IIT Bombay, 7th February 2009
\[\begin{gathered} अइउण्। ऋल्क्। एओड्। ऐऔच्। हयवरट्।
लण्। अमडणनम्। झभञ्। घढधष्। जबगडदश्।
खफछठथचटतव्। कपय्। शषसर्। हल्। \end{gathered} \]

Phonological Rules

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$
A \rightarrow B / C _D
$$

example: final devoicing

$$
\left[\begin{array}{ll}
+ & \text { consonantal } \\
- & \text { nasal } \\
+ & \text { voiced }
\end{array}\right] \rightarrow\left[\begin{array}{ll}
+ & \text { consonantal } \\
- & \text { nasal } \\
- & \text { voiced }
\end{array}\right] /_{-}
$$

Phonological Rules

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$
A \rightarrow B / C _D
$$

example: final devoicing

$$
\left[\begin{array}{ll}
+ & \text { consonantal } \\
- & \text { nasal } \\
+ & \text { voiced }
\end{array}\right] \rightarrow\left[\begin{array}{ll}
+ & \text { consonantal } \\
- & \text { nasal } \\
- & \text { voiced }
\end{array}\right] /-\sharp
$$

Phonological Rules

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$
A \rightarrow B / C _D
$$

Pāṇini's linear Coding

$A+$ genitive, $B+$ nominative, $C+$ ablative, $D+$ locative.

example

- sūtra 6.1.77: iko yanaci (इको यणचि)
- analysis: $[\mathrm{ik}]_{\text {gen }}[y a n]_{\text {nom }}[\mathrm{ac}]_{\text {loc }}$
- modern notation: $[\mathrm{iK}] \rightarrow[\mathrm{yN}] / _[\mathrm{aC}]$

Phonological Rules

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$
A \rightarrow B / C _D
$$

Pāṇini's linear Coding

$A+$ genitive, $B+$ nominative, $C+$ ablative, $D+$ locative .

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- analysis: $[\mathrm{ik}]_{\text {gen }}[y a n]_{\text {nom }}[\mathrm{ac}]_{\text {loc }}$
- modern notation: $[\mathrm{iK}] \rightarrow[\mathrm{yN}] / _[\mathrm{aC}]$

Pāṇini faced the problem of giving a linear representation of the nonlinear system of sound classes.

A similar problem occurs in ...

Libraries

Warehouses and stores

Pānini's solution: Śivasūtras

अइउण्। ऋल्टक्।

$$
\begin{aligned}
& a \cdot i \cdot u n|r \cdot l k| \\
& \text { एओङ्। ऐेऔच्। } \\
& \text { e.oin| ai.auc| } \\
& \text { हयवरट्।लण्। } \\
& \text { hayavarat } \mid \text { laṇ } \mid \\
& \text { अमङणनम्। झभज्। } \\
& \text { namanananam| jhabhañ| } \\
& \text { घढधष्। जबगडदश्। } \\
& \text { ghaḍadhaṣ| jabagaḍadaś| } \\
& \text { खफछठथचटतव्। } \\
& \text { khaphachathathacaṭatav| } \\
& \text { कपय्। शषसर्। हल्। } \\
& \text { kapay | śaṣasar| hal| }
\end{aligned}
$$

Pānini's solution: Śivasūtras

1.	a iu
2.	r!
3.	eo
4.	ai au
5.	h y v r
6.	1
7.	ñ m n n n
8.	jh bh
9.	gh dh dh
10.	jbg d d
11.	kh ph ch th th ctt
12.	kp
13.	śs s
14.	h

अइउण्। ऋल्टक्।

$a \cdot i \cdot u n|r \cdot l k|$

एओङ्। ऐेऔच्।
e.oì | ai.auc|

हयवरट्।लण्।
hayavarat \mid lan \mid
अमङणनम्। झभञ्।
namañaṇanam | jhabhañ|
घढधष्। जबगडदश्।
ghaḍhadhaṣ| jabagaḍadaś|
खफछठथचटतव्।
khaphachathathacaṭatav|
कपय्। शषसर्। हल्।
kapay| śaṣasar| hal|

Pānini's solution: Śivasūtras

1.	a iu	N
2.	r!	K
3.	e o	\dot{N}
4.	ai au	C
5.	h y v r	T
6.	1	N
7.	ñm n n n	M
8.	jh bh	Ñ
9.	gh ḍ dh	S
10.	$\mathrm{jbgg} d$	Ś
11.	kh ph ch th th ct t	V
12.	kp	Y
13.	śs s	R
14.	h	L

अइउण्। ऋल्टक्।

$a \cdot i \cdot u n|r \cdot l k|$

एओङ्। ऐेऔच्।
e.oì |ai.auc|

हयवरट्।लण्।
hayavaraṭ|lan|
अमड•णनम्। इभज्।
namañaṇanam | jhabhañ|
घढधष्। जबगडदश्।
ghadhadhaṣ| jabagadadaś|
खफछठथचटतव्।
khaphachaṭhathacaṭatav|
कपय्। शषसर्। हल्।
kapay| śaṣasar| hal|

Pratyāhāras

Pratyāhāras

1		a	i	u
2			r	!
3			e	\bigcirc
4			ai	au
5	h	y	v	r

Pratyāhāras

Analysis of iko yanaci: $[\mathrm{iK}] \rightarrow[y \mathrm{~N}] / _[\mathrm{aC}]$

1.		a	i	u
2.			r	!
3.			e	\bigcirc
4.			ai	au
5.	h	y	V	r
6.				

- $[\mathrm{iK}] \rightarrow[\mathrm{yN} \mathrm{N}] / _[\mathrm{aC}]$
- $\langle\mathrm{i}, \mathrm{u}, \mathrm{r},!\rangle \rightarrow\langle\mathrm{y}, \mathrm{v}, \mathrm{r}, \mathrm{I}\rangle / _\langle\mathrm{a}, \mathrm{i}, \mathrm{u}, \mathrm{r}, \text { ! , e, o, ai, au }\rangle$

Analysis of iko yanaaci: $[\mathrm{iK}] \rightarrow[\mathrm{yN}] / _[\mathrm{aC}]$

1.		a	i	u	N
2.			r	!	K
3.			e	\bigcirc	N
4.			ai	au	C
5.	h	y	v	r	T
6.				1	N

- $[\mathrm{iK}] \rightarrow[\mathrm{yN}] / _[\mathrm{aC}]$
- $\langle\mathrm{i}, \mathrm{u}, \mathrm{r}, \mathrm{l}\rangle \rightarrow\langle\mathrm{y}, \mathrm{v}, \mathrm{r}, \mathrm{l}\rangle / _\langle\mathrm{a}, \mathrm{i}, \mathrm{u}, \mathrm{r}, \mathrm{l}, \mathrm{e}, \mathrm{o}, \mathrm{ai}, \mathrm{au}\rangle$

General problem of S-sortability

Given a set of classes, order the elements of the classes (without duplications) in a linear order (in a list) such that each single class forms a continuous interval with respect to that order.

- The target orders are called S-orders
- A set of classes is S-sortable if it has an S-order

General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers such that each single class can be denoted by a sound-marker-pair (pratyāhāra).

Note that every S-order becomes a Sivasūtra-alphabet (S-alphabet) by adding a marker behind each element.

Given the set of classes $\{\{a, b\},\{a, b, c\},\{a, b, c, d\}\}$, the order abcd is one of its S-orders and a $M_{1} b M_{2} \subset M_{3} d M_{4}$ is one of its S-alphabets.

General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers such that each single class can be denoted by a sound-marker-pair (pratyāhāra).

Note that every S-order becomes a Sivasūtra-alphabet (S-alphabet) by adding a marker behind each element.

Given the set of classes $\{\{a, b\},\{a, b, c\},\{a, b, c, d\}\}$, the order $a b c d$ is one of its S-orders and a $M_{1} b M_{2} \subset M_{3} d M_{4}$ is one of its S-alphabets.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
abcghfide

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$
non-S-sortable example
The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.
$a b c d e$ or edcba

Some more Examples

S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$ is
S-sortable;
one of its S -orders is
$a b c g h f i d e$

non-S-sortable example

The set of classes:
$\{\{a, b\},\{b, c\},\{a, c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:
$\{\{d, e\},\{a, b\},\{b, c, d\},\{b, c, d, f\}\}$ is not S-sortable.
$a b c d e$ or edcba

Visualize relations

Visualize relations

$$
\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}
$$

Visualize relations

$\{\{d, e\},\{a, b\},\{b, c, d\}$, $\{b, c, d, f\}\}$

not S-sortable

Main theorem of S-sortability

A set of classes is S -sortable without duplications if one of the following equivalent statements is true:
(1) Its concept lattice is

Hasse-planar and for any element a there is a node labeled a in the S-graph.
(2) The concept lattice of the enlarged set of classes is Hasse-planar.
(3) The Ferrers-graph of the enlarged set of classes is bipartite.

S-sortable example

Main theorem of S-sortability

A set of classes is S -sortable without duplications if one of the following equivalent statements is true:
(1) Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
(2) The concept lattice of the enlarged set of classes is Hasse-planar.
(3) The Ferrers-graph of the enlarged set of classes is bipartite.
not S-sortable example

Hasse-planarity

$$
\{\{a, b\},\{a, c\},\{b, c\}\}
$$

planar, but not Hasse-planar

2nd condition: Hasse-planar \Rightarrow S-sortable

$\{\{d, e\},\{a, b\},\{b, c, d, f, g, h, i\},\{f, i\},\{c, d, e, f, g, h, i\},\{g, h\}\}$

2nd condition: S-sortable \Rightarrow Hasse-planar

2nd condition: evaluation

- It is of no help in the construction of S-alphabets with minimal number of markers.
- The planarity of a graph is difficult to check.

Main theorem of S-sortability

A set of classes is S -sortable without duplications if one of the following equivalent statements is true:
(1) Its concept lattice is

Hasse-planar and for any element a there is a node labeled a in the S-graph.
(2) The concept lattice of the enlarged set of classes is Hasse-planar.
(3) The Ferrers-graph of the enlarged set of classes is bipartite.

S-sortable example

non S-sortable examples

1st condition \Leftrightarrow 2nd condition

S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

e

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} c$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} c f i$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} c f i M_{2}$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} c f i M_{2} g h$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} \subset f i M_{2} g h M_{3}$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} c f i M_{2} g h M_{3} b$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

ed $M_{1} c f i M_{2} g h M_{3} b M_{4} a$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

$\underline{e d M_{1} c f i M_{2} g h M_{3} b M_{4} a M_{5}}$

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

1st condition: evaluation

+ Allows the construction of S-alphabets with minimal number of markers.
- The planarity of a graph is difficult to check.

Main theorem of S-sortability

A set of classes is S -sortable without duplications if one of the following equivalent statements is true:
(1) Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
(2) The concept lattice of the enlarged set of classes is Hasse-planar.
(3) The Ferrers-graph of the enlarged set of classes is bipartite.

- The Ferrers-graph can be computed directly from the set of classes.
- Its bipartity can be checked algorithmically.

3rd condition: terminology \& proof

Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

3rd condition: terminology \& proof

Theorem (Zschalig 2007)
The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

3rd condition: terminology \& proof

Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

3rd condition: example

	a	b	c	d	e	f
0				\times	\times	
1		\times	\times	\times		
2	\times	\times				
3		\times	\times			\times

3rd condition: example

3rd condition: evaluation

- It is of no help in the construction of S-alphabets with minimal number of markers.
+ It can be checked easily by an algorithm.

Getting back to Pāṇini's problem

$$
\begin{aligned}
& \text { a•i•uṇ| r•lk| e•on } \mid \text { ai•auc } \mid \text { hayavarat } \mid \\
& \text { laṇ| ñamanananam } \mid \text { jhabhañ } \mid \text { ghadhadhaṣ } \mid \text { jabagaḍadaś } \mid \\
& \text { khaphachathathacatatav } \mid \text { kapay } \mid \text { śaṣasar } \mid \text { hal } \mid
\end{aligned}
$$

Q: Are the Śivasūtras minimal (with respect to length)?

What does minimal mean?

$a \cdot i \cdot u \underline{n}|r \cdot l k| e \cdot o \dot{n} \mid$ ai•auc \mid hayavarat \mid
laṇ| ñamañaṇanam| jhabhañ| ghaḍadhaṣ| jabagaḍadaś|
khaphachaṭhathacaṭatav| kapay| śaṣasar| hal|
The Śivasūtras are not minimal if it is possible to rearrange the Sanskrit sounds in a new list with markers such that
(1) each pratyāhāra forms an interval ending before a marker,
(2) no sound occurs twice
or one sound occurs twice but less markers are needed.
\Rightarrow duplicating a sound is worse than adding markers

Is it necessary to duplicate a sound?

Main theorem on S-sortability (part 1a)

If a set of classes is S-sortable, then its concept lattice is Hasse-planar.

concept lattice of Pāṇini's pratyāhāras

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph
 as a minor is not planar.

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph

as a minor is not planar.

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph \square as a minor is not planar.

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph
 as a minor is not planar.

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph \square as a minor is not planar.

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph \square as a minor is not planar.

Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph
 as a minor is not planar.

There is no S-alphabet for the set of classes given by Pāṇini's pratyāhāras without duplicated elements!

h and the independent triples

	h	l	v
$\{h, l\}$	\times	\times	
$\{h, v\}$	\times		\times
$\{v, l\}$		\times	\times

Altogether there exists 249 independent triples.
h is included in all of them.

Concept lattice of Pāṇini's pratyāhāras with duplicated h

Concept lattice of Pāṇini's pratyāhāras with duplicated h

Concept lattice of Pānini's pratyāhāras with duplicated h

With the Śivasūtras Pānini has chosen one out of nearly 12 million minimal S-alphabets!

Open problems

The story is much more intricate

- We have neither shown that Pānini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.
- not all sound classes are denoted by pratyāhāras
- rules overgeneralize
- sūtra 1.3.10: yathāsaṃkhyamanudeśah samānām

Open problems

The story is much more intricate

- We have neither shown that Pānini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.
- not all sound classes are denoted by pratyāhāras
- rules overgeneralize
- sūtra 1.3.10: yathāsaṃkhyamanudeśah samānām

$$
\begin{aligned}
& \left\langle a, i, u, M_{1},\{r,!\}_{1}, M_{2},\left\{\left\langle\{e, o\}_{2}, M_{3}\right\rangle,\left\langle\{a i, a u\}_{3}, M_{4}\right\rangle\right\}_{4}\right. \\
& \quad h, y, v, r, M_{5}, l, M_{6}, \tilde{n}, m,\{\dot{n}, n, n,\}_{5}, M_{7}, j h, b h, M_{8} \\
& \{g h, d h, d h\}_{6}, M_{9}, j,\{b, g, d, d\}_{7}, M_{10},\{k h, p h\}_{8},\{c h, t h, t h\}_{9} \\
& \left.\quad\{c, t, t\}_{10}, M_{11},\{k, p\}_{11}, M_{12},\{s, s, s, s\}_{12}, M_{13}, h, M_{14}\right\rangle \\
& \\
& \begin{array}{l}
2!\times 2!\times 2!\times 2!\times 3!\times 3!\times 4!\times 2!\times 3!\times 3!\times 2!\times 3! \\
\left\}_{1}\right. \\
=2 \times 2 \times 2 \times 2 \times 6 \times 6 \times 24 \times 2 \times 6 \times 6 \times 2 \times 6=11943936
\end{array}
\end{aligned}
$$

Some numbers

- Pāṇini denotes 42 sound classes by pratyāhāras.
- The Śivasūtras allow the construction of 281 pratyāhāras.
- $2^{42}-43\left(>2 \cdot 10^{12}\right)$ possible sound classes.
- 11 (resp. 10, if unmarked classes are permitted) binary features are necessary to denote Pāṇini's pratyāhāras $\left(\Rightarrow 2^{11}=2048\right.$, resp. $2^{10}=1024$ classes can be constructed).
- Pāṇini has chosen 1 out of 11.943 .936 minimal S-alphabets
- The 42 sounds can be ordered in nearly $43!\left(>6 \cdot 10^{52}\right)$ lists in which h occurs twice.

Literature

國 Kiparsky，P．（1991），Economy and the construction of the Śivasūtras．In： M．M．Deshpande \＆S．Bhate（eds．），Pāṇinian Studies，Michigan：Ann Arbor．
－Petersen，W．（2008），Zur Minimalität von Pāṇinis Śivasūtras－Eine Untersuchung mit Mitteln der Formalen Begriffsanalyse．PhD thesis， university of Düsseldorf．

Petersen，W．（2009），On the Construction of Sivasutra－Alphabets．In：A． Kulkarni and G．Huet（eds．）：Sanskrit Computational Linguistics．LNCS 5406， Springer．

嗇 Staal，F．（1962），A Method of Linguistic Description．Language 38，1－10．
圊 Zschalig，C．（2007），Bipartite Ferrers－graphs and planar concept lattices．In： S．O．Kuznetsov and S．Schmidt（eds．）：Proceedings of the 5th ICFCA．LNCS 4390，p．313－327，Springer．

Origin of Pictures

- libraries (left):
http://www.meduniwien.ac.at/medizinischepsychologie/bibliothek.htm
- libraries (middle): http://www.math-nat.de/aktuelles/allgemein.htm
- libraries (right):
http://www.geschichte.mpg.de/deutsch/bibliothek.html
- warehouses:
http://www.metrogroup.de/servlet/PB/menu/1114920_11/index.html
- stores: http://www.einkaufsparadies-schmidt.de/01bilder01/

