How formal concept lattices solve a problem of ancient linguistics

Wiebke Petersen Department of Computational Linguistics Institute of Language and Information University of Düsseldorf

अइउण्॥ऋॡक्॥एओङ्॥ऐऔच्॥हयवरट्॥लण्॥ञमङणनम्॥झमञ्। घढधष्॥जबगडदश्॥खफछठथचटतव्॥कपय्॥श्वषसर्॥हल्॥

 $a \cdot i \cdot u \cdot n || r \cdot l k || e \cdot o \cdot n || a i \cdot a u c || hayavara t || || la \cdot n || \tilde{n} a ma \dot{n} a n a m || j hab ha \tilde{n} || g ha d ha d ha s || j a b a g a d a d a \dot{s} || k hap ha c ha t hat ha c a t a t a v || k a p a y || \dot{s} a s a s a r || ha l ||$

Phonological rules

A is replaced by **B** if preceded by **C** and followed by **D**

- in modern form: $A \rightarrow B/_{C_D}$
- as context-sensitive rule: $CAD \rightarrow CBD$

Phonological rules

A is replaced by **B** if preceded by **C** and followed by **D**

- in modern form: $A \rightarrow B/_{C_D}$
- as context-sensitive rule: $CAD \rightarrow CBD$

Example: final devoicing in German (Hunde - Hund)

 $[d] \rightarrow [t] / \#, [b] \rightarrow [p] / \#, [g] \rightarrow [k] / \#, ...$

Phonological rules

A is replaced by **B** if preceded by **C** and followed by **D**

- in modern form: $A \rightarrow B/_{C_D}$
- as context-sensitive rule: $CAD \rightarrow CBD$

Example: final devoicing in German (Hunde - Hund)

 $[d] \rightarrow [t] / \#, [b] \rightarrow [p] / \#, [g] \rightarrow [k] / \#, ...$

$$\begin{bmatrix} +consonantal \\ -nasal \\ +voiced \end{bmatrix} \rightarrow \begin{bmatrix} +consonantal \\ -nasal \\ -voiced \end{bmatrix} / \#$$

 $A \rightarrow B/_C \quad D$

 $A \rightarrow B/_C \quad D$

A + genitive, B + nominative, C + ablative, d + locative

 $A \rightarrow B/_C \quad D$

A + genitive, B + nominative, C + ablative, d + locative

6.1.77. iko yan aci (इको यण् अचि)

 $A \rightarrow B/_{C}$ D

A + genitive, B + nominative, C + ablative, d + locative

6.1.77. iko yan aci (इको यण् अचि)

 $[ik]_{genitive}$ $[yan]_{nominative}$ $[ac]_{locative}$

 $A \rightarrow B/_C \quad D$

A + genitive, B + nominative, C + ablative, d + locative

 $[ik]_{genitive}$ $[yan]_{nominative}$ $[ac]_{locative}$

$$[iK] \rightarrow [yN]/_[aC]$$

अइउण्॥ऋॡक्॥एओङ्॥ऐऔच्॥हयवरट्॥लण्॥ञमङणनम्॥झमञ्। घढधष्॥जबगडदश्॥खफछठथचटतव्॥कपय्॥श्वषसर्॥हल्॥

 $a \cdot i \cdot u \cdot n || r \cdot l k || e \cdot o \cdot n || a i \cdot a u c || hayavara t || || la \cdot n || \tilde{n} a ma \dot{n} a n a m || j hab ha \tilde{n} || g ha d ha d ha s || j a b a g a d a d a \dot{s} || k hap ha c ha t hat ha c a t a t a v || k a p a y || \dot{s} a s a s a r || ha l ||$

anubandha

1.	a	i	u			Ņ
2.				ŗ	1	Κ
3.		е	0			Ň
4.		ai	au			С
5.	h	У	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	Μ
8.	jh	bh				Ñ
9.			gh	ḍh	dh	Ş
10.	j	b	g	ģ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Y
13.		ś	ş	S		R
14.	h					L

sūtras

sef here

SEL DORI

DÜ

anubandha

1.	a	i	u			Ņ
2.				ŗ	1	Κ
3.		е	0			Ň
4.		ai	au			С
5.	h	у	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh		-		$\mathbf{ ilde{N}}$
9.	-		gh	dh	dh	Ş
10.	j	b	g	ļ	d	Ś
11.	kh	ph	ch	ţh	th	
			с	ţ	t	V
12.	k	р				Y
13.		ś	ş	S		R
14.	h		-			L

sūtras

sef hain

DORI

DÜ

Phonological classes/ pratyāhāras

1.	a	i	u			Ņ
2.				ŗ	1	K
3.		е	0			Ń
4.		ai	au			С
5.	h	У	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ

Phonological classes are denoted by *pratyāhāras*. E.g., the *pratyāhāra i*C denotes the set of segments in the continuous sequence starting with *i* and ending with *au*, the last element before the *anubandha C*.

Phonological classes/ pratyāhāras

1.	a	i	u			Ņ
2.				ŗ	1	K
3.		е	0			Ń
4.		ai	au			C
5.	h	у	v	r		Ţ
6.					1	Ņ
7.	ñ	m	'n	ņ	n	Μ
8.	jh	bh				Ñ
	-		iC			

Phonological classes are denoted by pratyāhāras.

E.g., the *pratyāhāra iC* denotes the set of segments in the continuous sequence starting with *i* and ending with *au*, the last element before the *anubandha C*.

Phonological classes/ pratyāhāras

Phonological classes are denoted by pratyāhāras.

E.g., the *pratyāhāra iC* denotes the set of segments in the continuous sequence starting with *i* and ending with *au*, the last element before the *anubandha C*.

Minimality criteria

- 1. The length of the whole list is minimal.
- 2. The length of the sublist of the anubandhas is minimal and the length of the whole list is as short as possible.
- 3. The length of the sublist of the sounds is minimal and the length of the whole list is as short as possible.

Minimality criteria

- 1. The length of the whole list is minimal.
- 2. The length of the sublist of the anubandhas is minimal and the length of the whole list is as short as possible.
- 3. The length of the sublist of the sounds is minimal and the length of the whole list is as short as possible.
 - no duplication of h
 - less anubandhas

Basic concepts

S-encodable set of sets:

 $\Phi = \{ \{d,e\}, \{b,c,d,f,g,h,i\}, \{a,b\}, \{f,i\}, \{c,d,e,f,g,h,i\}, \{g,h\} \}$

S-alphabet $(\mathcal{A}, \Sigma, <)$ of Φ : alphabet marker total order on $\mathcal{A} \cup \Sigma$

e d
$$M_1$$
 c i f M_2 g h M_3 b M_4 a M_5

Basic concepts

S-encodable set of sets:

 $\Phi = \{ \{d,e\}, \{b,c,d,f,g,h,i\}, \{a,b\}, \{f,i\}, \{c,d,e,f,g,h,i\}, \{g,h\} \}$

If Φ is S-encodable, then the formal concept lattice $\underline{\mathcal{B}}(\Phi, \mathcal{A}, \ni)$ is planar

If Φ is S-encodable, then the formal concept lattice $\underline{\mathcal{B}}(\Phi, \mathcal{A}, \ni)$ is planar

concept lattice for Pāņini's phonological classes

Criterion of Kuratowski: A graph is planar iff it has neither K^5 nor $K_{3,3}$ as a *minor*.

part of the concept lattice for Pānini's phonological classes

Criterion of Kuratowski: A graph is planar iff it has neither K^5 nor $K_{3,3}$ as a *minor*.

Pānini's phonological classes

We are not done yet!

Existence of S-alphabets

 $\overline{\Phi} = \Phi \cup \{\{a\} : a \in \mathcal{A}\}$ The following statements are equivalent:

- 1. Φ is S-encodable
- 2. $\underline{\mathcal{B}}(\overline{\Phi}, \mathcal{A}, \ni)$ is planar

Existence of S-alphabets

 $\overline{\Phi} = \Phi \cup \{\{a\} : a \in \mathcal{A}\}$ The following statements are equivalent:

- 1. Φ is S-encodable
- 2. $\underline{\mathcal{B}}(\overline{\Phi}, \mathcal{A}, \ni)$ is planar

Existence of S-alphabets

 $\bar{\varPhi} = \varPhi \cup \{\{a\} : a \in \mathcal{A}\}$

The following statements are equivalent:

- 1. Φ is S-encodable
- 2. $\underline{\mathcal{B}}(\overline{\Phi}, \mathcal{A}, \ni)$ is planar
- 3. the S-graph contains all attribute concepts

Pāņini's Śivasūtras are optimal

Pāņini's Śivasūtras are optimal

Pāņini's Śivasūtras are optimal

