Attributes and type signatures

Frames for sortal, relational, and functional concepts

Wiebke Petersen

Heinrich-Heine-Universität Düsseldorf Research group on "Functional Concepts and Frames" www.phil-fak.uni-duesseldorf.de/~petersen/

CTF 2007, Düsseldorf

Classification of concepts (Löbner)

2 Frames

- Definition of frames
- Classification of frames

- Attributes and functional concepts
- Type signatures and minimal upper attributes

Classification of concepts (Löbner)

2 Frames

- Definition of frames
- Classification of frames

- Attributes and functional concepts
- Type signatures and minimal upper attributes

Classification of concepts (Löbner)

2 Frames

- Definition of frames
- Classification of frames

- Attributes and functional concepts
- Type signatures and minimal upper attributes

Frames

Attributes and type signatures

concept classification

person, pope, house, verb, sun, Mary, wood, brother, mother, meaning, distance, spouse, argument, entrance

Frames

Attributes and type signatures

concept classification: relationality

non-relational	person, pope, house, verb, sun, Mary, wood
relational	brother, mother, meaning, distance, spouse, argument, entrance

Attributes and type signatures

concept classification: uniqueness of reference

	non-unique refer- ence	unique reference	
non-relational	person, house, verb, wood	Mary, pope, sun	
relational	brother, argument, entrance	mother, meaning, distance, spouse	

concept classification

	non-unique refer- ence	unique reference	
non-relational	sortal concept	individual con- cept	
relational	proper relational concept	functional con- cept	

concept classification

	non-unique refer- ence	unique reference	
non-relational	sortal concept	individual con- cept	
relational	proper relational concept	functional con- cept	

Classification of concepts (Löbner)

2 Frames

- Definition of frames
- Classification of frames

- Attributes and functional concepts
- Type signatures and minimal upper attributes

Barsalou (1992) Frames, Concepts, and Conceptual Fields

- Frames provide the fundamental representation of knowledge in human cognition.
- At their core, frames contain attribute-value sets.

Attributes and type signatures

example:passport frame

Attributes and type signatures

lolly-frame

Attributes and type signatures

frame definition

Definition

Frames are rooted, connected, directed graphs with

- one central node (here: double-encircled)
- nodes labeled with types
- arcs labeled with attributes
- no node with two equally labeled outgoing arcs

Attributes and type signatures

type hierarchy and frame subsumption

terminology

Frames

Attributes and type signatures

Definition

A node is a root of a frame if all other nodes can be reached from it by a path of directed arcs.

terminology

Frames

Attributes and type signatures

Definition

A node is a root of a frame if all other nodes can be reached from it by a path of directed arcs.

Definition

A node is a source if it has no incoming arc.

Frames

Attributes and type signatures

lolly-frame (sortal concept)

Frames

Attributes and type signatures

lolly-frame (sortal concept)

Attributes and type signatures

stick-frame (functional concept)

Attributes and type signatures

stick-frame (functional concept)

central node \neq root = source

Frames

Attributes and type signatures

sister-frame (proper relational concept)

Frames

Attributes and type signatures

sister-frame (proper relational concept)

no root & central node = source

Attributes and type signatures

classification of acyclic frame graphs

C: central node, R: root, S: source

C = R C = S $\exists R$ $\exists S$ typical graph frame class sortal +++functional +proper relational +???

Attributes and type signatures

4th frame class: not lexicalized?

relational concept: father of a niece

Attributes and type signatures

4th frame class: not lexicalized?

Attributes and type signatures

4th frame class: not lexicalized?

Attributes and type signatures

4th frame class: not lexicalized?

"male person who is the spouse of someone who has a sibling"

Attributes and type signatures

concept classification and frame graphs

relationality

The arguments of relational concepts are modeled in frames as sources that are not identical to the central node.

functionality

The functionality of functional concepts is modeled by an incoming arc at the central node.

conclusion

The concept classification is reflected by the properties of the frame graphs.

Attributes and type signatures

concept classification and frame graphs

relationality

The arguments of relational concepts are modeled in frames as sources that are not identical to the central node.

functionality

The functionality of functional concepts is modeled by an incoming arc at the central node.

conclusion

The concept classification is reflected by the properties of the frame graphs.

Attributes and type signatures

concept classification and frame graphs

relationality

The arguments of relational concepts are modeled in frames as sources that are not identical to the central node.

functionality

The functionality of functional concepts is modeled by an incoming arc at the central node.

conclusion

The concept classification is reflected by the properties of the frame graphs.

Classification of concepts (Löbner)

2 Frames

- Definition of frames
- Classification of frames

3

- Attributes and functional concepts
- Type signatures and minimal upper attributes

Barsalou, 1992: Frames, Concepts, and Conceptual Fields

"I define an attribute as a **concept** that describes an aspect of at least some category member."

Guarino, 1992: Concepts, attributes and arbitrary relations

"We define attributes as **concepts** having an associate relational interpretation, allowing them to act as conceptual components as well as concepts on their own."

interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to 2^{\mathcal{U} \times \mathcal{U}}$

 $\rho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho(\text{mother})$, then $m \in \delta(\text{mother})$.

interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} \times \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho(\text{mother})$, then $m \in \delta(\text{mother})$.

interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} imes \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho$ (mother), then $m \in \delta$ (mother).

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial: $ATTR \subseteq TYPE$.

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial: $ATTR \subseteq TYPE$.

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial: $ATTR \subseteq TYPE$.

Attributes and type signatures

type signature and minimal upper attributes

Barsalou, 1992: Frames, Concepts, and Conceptual Fields

"I define an attribute as a **concept** that describes an aspect of at least some category member."

"Values are subordinate concepts of an attribute."

Attributes and type signatures

type signature and minimal upper attributes

Definition

A minimal upper attribute of a type is a minimal element of the set of upper attributes of the type. Where an upper attribute of a type is an attribute which is a supertype of the type.

Classification of concepts	Frames 0000000000000	Attributes and type signatures ○○○○●○○○○○
$\mathcal{A}TT\mathcal{R} \subseteq T\mathcal{YPE}$	T	
object TASTE: taste TEMPERATURE: temperatur COLOR : color SHAPE:shape	e sour sweet hot cold red green b	shape
apple pepper SHAPE: round		
red apple	apple COLOR red	

round

Attributes and type signatures

Frames

Attributes and type signatures

polysemy

polysemy

polysemy

Frames

Attributes and type signatures

logical reformulation of a frame

 $\begin{array}{l} \lambda x \exists y_1 \exists y_2 \exists y_3 \exists y_4 \exists y_5 \\ \text{lolly}(x) \land \text{body}(y_1) \land \text{stick}(y_2) \land \text{red}(y_3) \land \\ \text{long}(y_4) \land \text{factory}(y_5) \\ \land \text{BODY}(x) = y_1 \land \text{STICK}(x) = y_2 \\ \land \text{COLOR}(y_1) = y_3 \land \text{SHAPE}(y_2) = y_4 \\ \land \text{PRODUCER}(y_1) = y_5 \land \text{PRODUCER}(y_2) = y_5 \\ \land \text{PRODUCER}(y_1) = \text{PRODUCER}(y_2) \end{array}$

\Leftrightarrow

 $\begin{array}{l} \lambda x \ \text{lolly}(x) \land \text{body}(\texttt{BODY}(x)) \land \texttt{stick}(\texttt{STICK}(x)) \land \\ \texttt{red}(\texttt{COLOR}(\texttt{BODY}(x))) \land \\ \texttt{long}(\texttt{SHAPE}(\texttt{STICK}(x))) \land \\ \texttt{factory}(\texttt{PRODUCER}(\texttt{COLOR}(\texttt{BODY}(x)))) \land \\ \land \texttt{PRODUCER}(\texttt{BODY}(x)) = \texttt{PRODUCER}(\texttt{STICK}(x)) \end{array}$

summary

- The concept classification is reflected by the graph-theoretical properties of the associated frame graphs.
- Attributes in frames are relationally interpreted functional concepts and therefore, frames decompose concepts by means of functional concepts.
- Type signatures provide a powerful tool for reducing redundancies in frame-based systems.

- The concept classification is reflected by the graph-theoretical properties of the associated frame graphs.
- Attributes in frames are relationally interpreted functional concepts and therefore, frames decompose concepts by means of functional concepts.
- Type signatures provide a powerful tool for reducing redundancies in frame-based systems.

- The concept classification is reflected by the graph-theoretical properties of the associated frame graphs.
- Attributes in frames are relationally interpreted functional concepts and therefore, frames decompose concepts by means of functional concepts.
- Type signatures provide a powerful tool for reducing redundancies in frame-based systems.

literature

Barsalou (1992) Frames, Concepts, and Conceptual Fields. In Lehrer and Kittay (eds.): Frames, Fields, and Contrasts.

Guarino (1992) Concepts, attributes and arbitrary relations some linguistic and ontological criteria for structuring knowledge bases. Data Knowl. Eng. 8, 249-261

- Löbner (2005) FFF Forschergruppe "Funktionalbegriffe und Frames", DFG-Antrag.
- Petersen & Werning (2007) Conceptual Fingerprints: Lexical Decomposition by Means of Frames. In: LNAI (4604), Springer.
- Petersen (2007) Representation of Concepts as Frames. To appear in: The Baltic International Yearbook of Cognition, Logic and Communication.

origin of the pictures

- frames (title) http://www.frames-by-the-case.com (07/10/2006)
- passports: http://travel.state.gov/images/non-e-passport.jpg(17/08/2007) and http://www.bundesdruckerei.de/pics/4_presse/fotoarchiv/aktuelle_fotos/ECC.jpg (17/08/2007)
- root: http://www.swiss.ai.mit.edu/~jaffer/TreeRoot.jpg(17/08/2007)
- Düssel source: http://upload.wikimedia.org/wikipedia/commons/8/84/(17/08/2007)
- apple: http://www.jonathanwald.com/800x600/images/Red-Apple.jpg(17/08/2007)
- hot pepper (1): http://www.sxc.hu/pic/m/a/an/anissa/39574_hot_pepper.jpg(17/08/2007)
- hot pepper (2): http://health.yahoo.com/media/prevention/image/picadillo_stuffed_peppers.jpg (17/08/2007)