On Frames and their components

Wiebke Petersen

Heinrich-Heine-Universität Düsseldorf Collaborative Research Centre 991: The Structure of Representations in Language, Cognition, and Science

www.phil-fak.uni-duesseldorf.de/~petersen/

17. April 2012, Tilburg

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

- 2 Frames as generalized typed feature structures
- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

2 Frames as generalized typed feature structures

- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

- 2 Frames as generalized typed feature structures
- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

- 2 Frames as generalized typed feature structures
- Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

- 2 Frames as generalized typed feature structures
- Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

- 2 Frames as generalized typed feature structures
- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis ●○○	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
Frame hypot	hesis (Löbneı	r 2012)		

- H1 The human cognitive system operates with one general format of representations.
- H2 If the human cognitive system operates with one general format of representations, this format is essentially Barsalou frame.

A frame model is needed, that

- is sufficiently expressive to capture the diversity of representations
- sufficiently precise and restrictive in order to be testable

Aim: theory of concepts based on frames as concept representations

Frame hypothesis ○●○	Frames	1st perspective	2nd perspective	Outlook 0000
Düsseldorf fi	rame group			

- Semantics
- Syntax
- Computational Linguistics
- Psycholinguistics
- Neurolinguistics
- Neuroscience
- Cognitive Science
- Psychology
- Philosophy
- History of Science
- Philologies (German, Romanistic)

Frame hypothesis ○○●	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
The task				

Formalizing Barsalou's cognitive frame theory

bridging the gap between cognitive linguistics and compositional semantics

Hypothesis: Frames can be defined as generalized typed feature structures (in the sense of Carpenter 1992)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

2 Frames as generalized typed feature structures

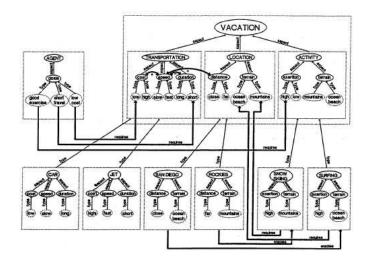
- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames ●○○○○○○○○○○	1st perspective	2nd perspective	Outlook 0000
frames				

Barsalou (1992) Frames, Concepts, and Conceptual Fields

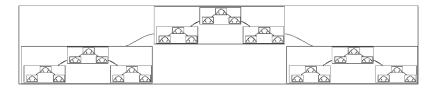
- Frames provide the fundamental representation of knowledge in human cognition.
- At their core, frames contain attribute-value sets.
- Frames further contain a variety of relations.
 - Constraints



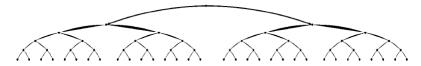


Frame hypothesis	Frames 00●00000000	1st perspective	2nd perspective	Outlook 0000	
Unlimited recursion in frames					

Self-similarity in Barsalou's frames (attributes are frames):



Recursion in classical feature structure theories:



Frame hypothesis	Frames 000●0000000	1st perspective	2nd perspective	Outlook 0000
feature struc	tures			

typed feature structure

 phrase

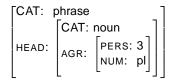
 HEAD:

 AGR:

 PERS:

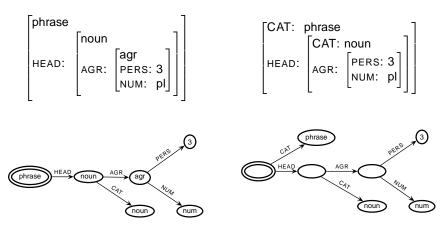
 NUM:

untyped feature structure

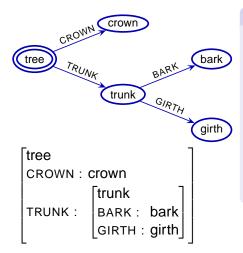


typed feature structure

untyped feature structure



frames as generalized feature structures

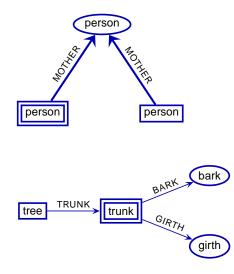


feature structures (Carpenter 1992)

feature structures are connected directed graphs with

- one central node
- nodes labeled with types
- arcs labeled with attributes
- no node with two outgoing arcs with the same label
- and such that each node can be reached from the central node via directed arcs.

frames as generalized feature structures



Frames (Petersen 2007)

Frames

are connected directed graphs with

- one central node
- nodes labeled with types
- arcs labeled with attributes
- no node with two outgoing arcs with the same label

Open argument nodes are marked as rectangular nodes.

Frames are unrooted feature structures.

Frame hypothesis	Frames 00000●00000	1st perspective	2nd perspective	Outlook 0000
Formal Defin	nitions			

Definition (Frames)

Given a set TYPEof types and a finite set ATTR of attributes. A *frame* is a tuple $F = (Q, \bar{q}, \delta, \theta)$ where:

- Q is a finite set of nodes,
- $\bar{q} \in Q$ is the central node,
- δ : ATTR \times Q \rightarrow Q is the partial *transition function*,
- θ : $\mathbf{Q} \rightarrow \mathsf{TYPE}$ is the total node typing function,

such that the underlying graph (Q, E) with edge set $E = \{\{q_1, q_2\} | \exists a \in ATTR : \delta(a, q_1) = q\}$ is connected.

Frame hypothesis	Frames ○○○○○○●○○○○	1st perspective	2nd perspective	Outlook 0000

Definition (Subsumption)

A frame $F_1 = \langle Q_1, \bar{q}_1, \delta_1, \theta_1 \rangle$ subsumes a frame $F_2 = \langle Q_2, \bar{q}_2, \delta_2, \theta_2 \rangle$ ($F \sqsubseteq F'$) iff there is a total $h : Q_1 \to Q_2$ with

function

• $h(\bar{q}_1) = \bar{q}_2$,

•
$$\forall q \in \mathsf{Q}_1 : heta_1(q) \sqsubseteq heta_2(h(q)),$$

• if $\delta_1(f,q)$ is defined, then $h(\delta_1(f,q)) = \delta_2(f,h(q))$.

(Carpenter 1992)

Definition (Equivalence)

Two frames F_1 and F_2 are equivalent $(F_1 \sim F_2)$, if $F_1 \sqsubseteq F_2$ and $F_2 \sqsubseteq F_1$.

Frame hypothesis	Frames	1st perspective	2nd perspective	Outlook
	0000000000			

Definition (Subsumption)

A frame $F_1 = \langle Q_1, \bar{q}_1, \delta_1, \theta_1 \rangle$ subsumes a frame $F_2 = \langle Q_2, \bar{q}_2, \delta_2, \theta_2 \rangle$ ($F \sqsubseteq F'$) iff there is a total injective function $h : Q_1 \to Q_2$ with

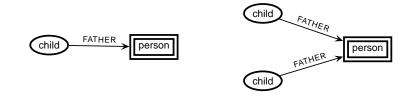
• $h(\bar{q}_1) = \bar{q}_2$,

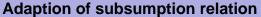
•
$$\forall q \in Q_1 : \theta_1(q) \sqsubseteq \theta_2(h(q)),$$

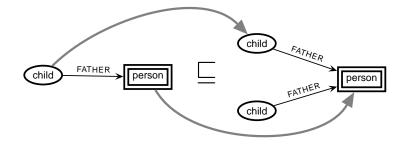
• if $\delta_1(f, q)$ is defined, then $h(\delta_1(f, q)) = \delta_2(f, h(q))$.

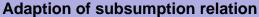
Definition (Equivalence)

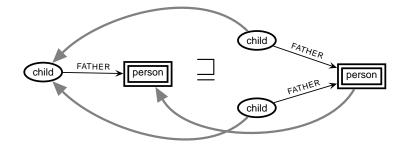
Two frames F_1 and F_2 are equivalent $(F_1 \sim F_2)$, if $F_1 \sqsubseteq F_2$ and $F_2 \sqsubseteq F_1$.









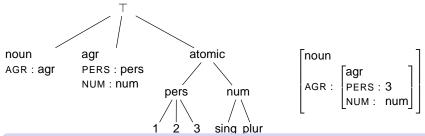


why typed frames and type signatures?

modeling convention (Carpenter 1992:34)

- The nodes of a feature structure are taken to represent objects, and we assume that every node is labeled with a type symbol which represents the most specific conceptual class to which the object is known to belong.
- An arc between two nodes indicates that the object represented by the source node has a feature, represented by a feature symbol, which has a value represented by the target node.
- We think of our types as organizing feature structures into natural classes.

why typed frames and type signatures?

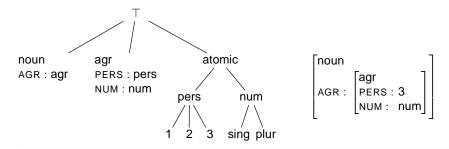


type signature

A type signature consists of a type hierarchy, $\langle T, \sqsubseteq \rangle$, a finite set of attributes ATTR and an **appropriateness specification**, i.e. a partial function, Approp : ATTR $\times T \to T$ that respects:

- attribute introduction (each attribute is introduced at a unique most general type)
- upward closure / right monotonicity (inheritance of appropriateness conditions)

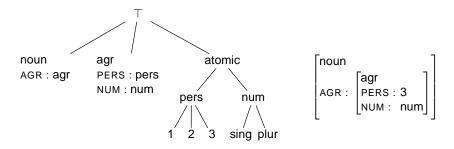
why typed frames and type signatures?



Type signatures

- capture hierarchical relations
- capture generalizations
- express constraints
- enable underspecified frames

why typed frames and type signatures?



However,

- redundancy in attribute and type labels
- status of types is not clear (Carpenter 1992: types represent conceptual classes)
- frames and types: two means of expressing concepts?

Frame hypothesis	Frames ○○○○○○○○○●	1st perspective	2nd perspective	Outlook 0000
possible sol	utions			

1st perspective:

The distinction between the attribute set and the type set is artificial. The attribute set should be taken as a subset of the type set.

 $\mathcal{ATTR} \subseteq \mathcal{TYPE}$

2nd perspective:

The distinction between the attribute set and the type set is artificial. Types are definable on the basis of attribute domain and ranges.

 $\mathcal{TYPE} \rightsquigarrow \mathcal{ATTR}$

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

Frame hypothesis

2 Frames as generalized typed feature structures

Attributes in frames are types (1st perspective)

Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective ●○○○○○○	2nd perspective	Outlook 0000
attributes in	frames			

Barsalou, 1992

"I define an attribute as a **concept** that describes an aspect of at least some category member." "Values are subordinate concepts of an attribute."

Guarino, 1992: Concepts, attributes and arbitrary relations

"We define attributes as **concepts** having an associate relational interpretation, allowing them to act as conceptual components as well as concepts on their own."

Frame hypothesis	Frames 00000000000	1st perspective o●ooooo	2nd perspective	Outlook 0000
-		f f and f and the		

excursus: interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to 2^{\mathcal{U} \times \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho$ (mother), then $m \in \delta$ (mother).

Frame hypothesis	Frames 00000000000	1st perspective ○●○○○○○	2nd perspective	Outlook 0000
	townstation a	f form of the second of		

excursus: interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} \times \mathcal{U}}$

 $\rho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho$ (mother), then $m \in \delta$ (mother).

Frame hypothesis	Frames 00000000000	1st perspective o●ooooo	2nd perspective	Outlook 0000
-		f f and f and the		

excursus: interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} \times \mathcal{U}}$

 $\rho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

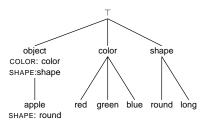
If $(p, m) \in \varrho$ (mother), then $m \in \delta$ (mother).

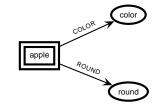
Frame hypothesis	Frames 00000000000	1st perspective ○○●○○○○	2nd perspective	Outlook 0000
attributes in	frames			

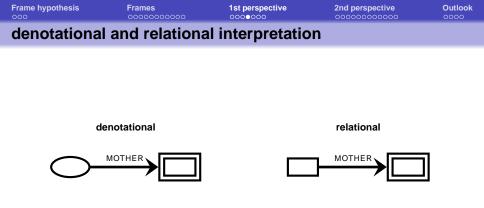
Thesis:

Attributes in frames are relationally interpreted functional concepts!

- attributes are not frames themselves
- attributes are unstructured
- the possible values of an attribute are subconcepts of the denotationally interpreted functional concept







Frame hypothesis	Frames	1st perspective	2nd perspective	Outlook
000	0000000000	0000000	00000000000	0000

attributes in frames (1st perspective)

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial. The attribute set should be taken as a subset of the type set: $ATTR \subseteq TYPE$.

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook

attributes in frames (1st perspective)

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial. The attribute set should be taken as a subset of the type set: $ATTR \subseteq TYPE$.

Frame hypothesis	Frames 00000000000	1st perspective oooo●oo	2nd perspective	Outlook 0000

attributes in frames (1st perspective)

thesis:

Attributes in frames are relationally interpreted functional concepts!

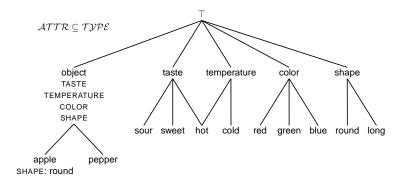
consequence (1):

Frames decompose concepts into relationally interpreted functional concepts!

consequence (2):

The distinction between the attribute set and the type set is artificial. The attribute set should be taken as a subset of the type set: $\mathcal{ATTR} \subseteq \mathcal{TYPE}$.

type signature and minimal upper attributes (1st perspective)

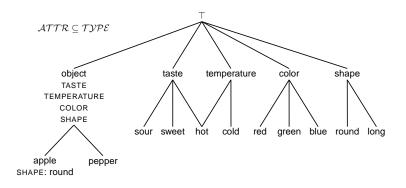


Barsalou, 1992: Frames, Concepts, and Conceptual Fields

"I define an attribute as a **concept** that describes an aspect of at least some category member."

"Values are subordinate concepts of an attribute."

type signature and minimal upper attributes (1st perspective)

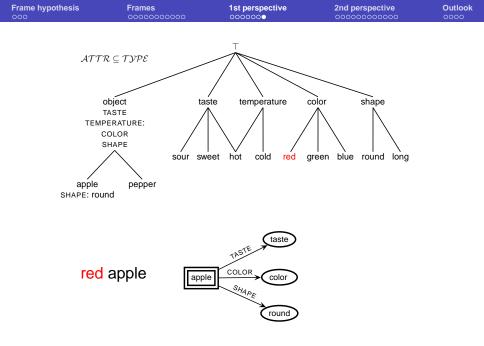


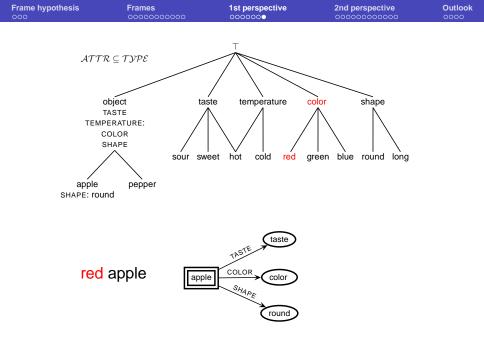
Definition

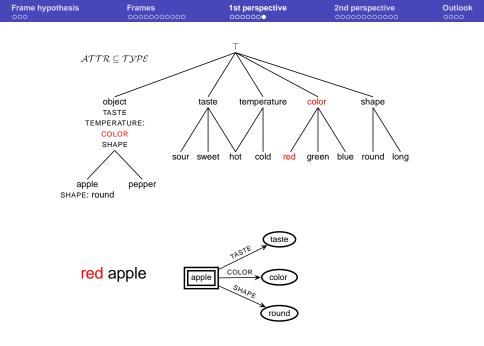
A minimal upper attribute of a type is a minimal element of the set of upper attributes of the type. Where an upper attribute of a type is an attribute which is a supertype of the type.

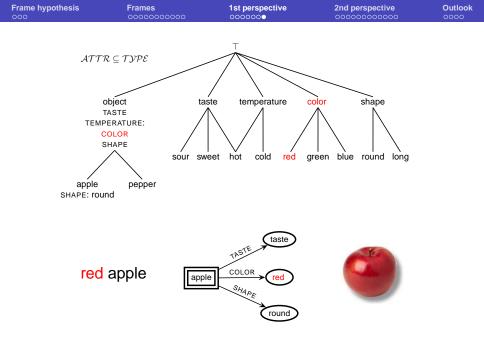
Frame hypothesis	Frames	D	1st perspective ○○○○○●	2nd perspective	Outlook 0000
			TASTE taste		
red	apple	apple	COLOR Color		

round









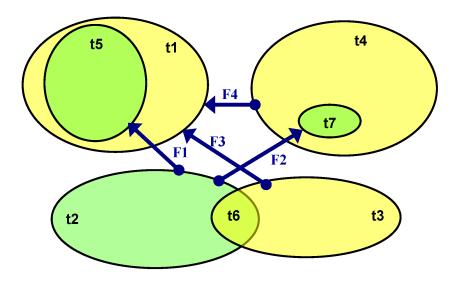
Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
outline				

- Frame hypothesis
- 2 Frames as generalized typed feature structures
- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

5 Outlook

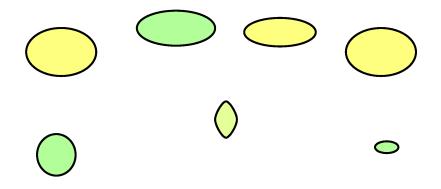
Frame hypothesis	Frames	1st perspective	2nd perspective ●○○○○○○○○○○	Outlook
na dia alla atte				

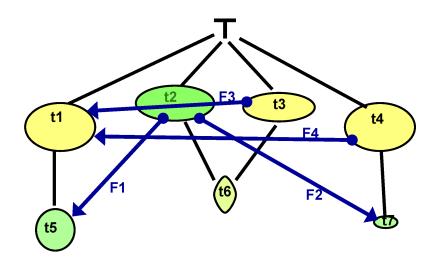
radically attribute-oriented perspective

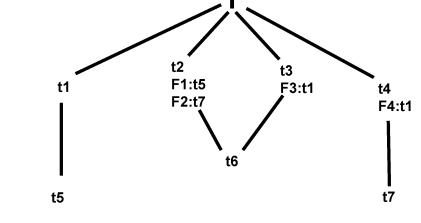


Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective ●○○○○○○○○○○	Outlook 0000
radically attribute-oriented perspective				

radically attribute-oriented perspective







Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective o●oooooooooo	Outlook 0000
attribute spa	ace			

Definition

An attribute space is a tuple $(\mathcal{U}, \mathcal{A})$ consisting of a universe set \mathcal{U} and a finite set of attributes $\mathcal{A} \subseteq 2^{\mathcal{U} \times \mathcal{U}}$ which are partial functions (i.e., if $(x, y), (x, z) \in \mathcal{A}$ then y = z).

Attribute composition: the set of paths Π in $(\mathcal{U}, \mathcal{A})$ is the set of all finite attribute sequences. If $\pi = a_1 a_2 \dots a_n$ we write $\pi(x)$ for $a_n(\dots(a_2(a_1(x)))\dots)$.

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective ○○●○○○○○○○○	Outlook 0000
types				

Definition

Given an attribute space $(\mathcal{U}, \mathcal{A})$ and a set S of relevant subsets of \mathcal{U} . The set of types \mathcal{T} is $\mathcal{T} = 2^S / \sim$ with:

•
$$\forall \varphi, \psi \subseteq \mathbf{S} : \varphi \sim \psi \text{ iff } \bigcap \varphi = \bigcap \psi.$$

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective ○○○●○○○○○○○	Outlook 0000
types				

Definition

The type hierarchy (\mathcal{T}, \supseteq) is defined by

•
$$[\varphi] \sqsubseteq [\psi]$$
 iff $\bigcup [\varphi] \subseteq \bigcup [\psi]$

• or equivalently (extensionally): $[\varphi] \sqsubseteq [\psi]$ iff $\bigcap \varphi \supseteq \bigcap \psi$

The type hierarchy forms a lattice (top element $[\emptyset]$, bottom element [S]).

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook 0000
relevant subs	ets (example))		

$$S = A_d \cup \prod_r$$
 with:

A_d is the set of attribute domains: *A_d* = {*a_d* | *a* ∈ *A*} where *a_d* = {*x* ∈ *U*|∃*u* ∈ *U* : *a*(*x*) = *u*}
Π_r is the set of path ranges:

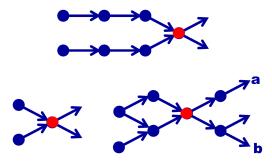
$$\Pi_r = \{\pi_r | \pi \in \Pi\} \text{ where } \pi_r = \{x \in \mathcal{U} | \exists u \in \mathcal{U} : \pi(u) = x\}$$

Definition

The type signature on $(\mathcal{U}, \mathcal{A})$ with relevant subset set $\mathcal{A}_d \cup \prod_r$ is $(\mathcal{T}, \sqsupseteq, \text{Approp})$ where Approp : $\mathcal{A} \times \mathcal{T} \to \mathcal{T}$ is the appropriateness condition defined by:

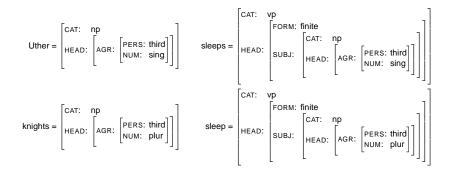
• Approp
$$(a, [\varphi]) = [\{(\pi a)_r | \pi_r \in \bigcup [\varphi]\}]$$

The granularity of the type hierarchy can be easily adjusted by adapting the set of relevant subsets *S*

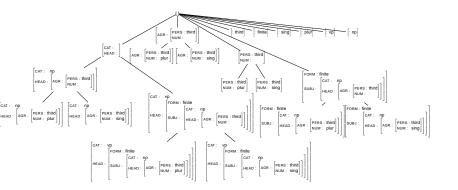


examples of attribute-defined relevant subsets

- FCAType is a system for the automatic induction of type signatures from sets of untyped feature structures (i.e., sortal frames).
- It uses methods of Formal Concept Analysis (Ganter & Wille 1998).
- key idea: decomposition of feature structures into paths, path equations and path-value-pairs (note: attribute-based components).
- It can be straightforwardly adapted to general frames.

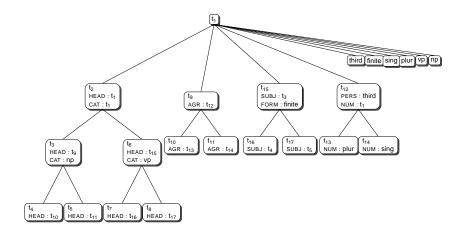


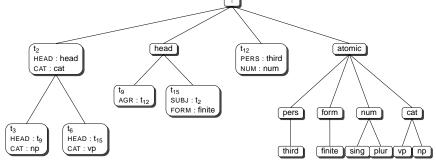
(taken from Shieber 1986)

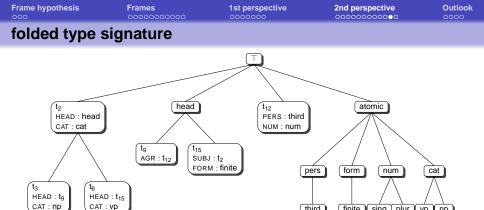


Frame hypothesis	Frames	1st perspective	2nd perspective	Outlook
000	0000000000	000000	000000000000	0000

unfolded type signature







third

finite

sing [plur] vp] np

Carpenter 1992: "We think of our types as organizing feature structures into natural classes."

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective ○○○○○○○○○●	Outlook 0000
capturing co	onstraints			

The granularity of the type hierarchy can be adjusted to capture constraints:

- inverse images of (some) values (e.g. COLOR⁻¹(red); "if a tomato is ripe, it is red)
- inverse images of value ranges (e.g. AGE⁻¹(≤ 18); "a human under 18 is a child").
- attribute domains (e.g., SHAPE,SIZE; "if something has a shape, it has a size")
- path ranges (e.g., HAIR COLOR; "hair colors are restricted")
- path equations
- monotonic constraints ("the older a stamp is, the more expensive it is")

• ...

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook
outline				

- Frame hypothesis
- 2 Frames as generalized typed feature structures
- 3 Attributes in frames are types (1st perspective)
- Types are definable by attributes (2nd perspective)

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook ●০০০
Düsseldorf fr	ame model			

We aim at a frame model that is

- powerful because of unlimited recursiveness (compare e.g. Fillmore frames)
- expressive because of type specifications
- precise because of restriction to functional attributes (compare e.g. semantic nets)
- formalized (mathematical definition and model-theoretic interpretation)
- empirical founded (evidence from cognitive science and psycholinguistics)

Why not traditional PL1 with truth-valued model theory?

Advantages of frame approach

 transparent and preserving composition in frames: the information of the parts is preserved, accumulated, and configurated

(in truth-functional logic the meaning of the parts is not recoverable from the meaning of the whole)

- variable freeness: cognitive more adequate, information elements are related by attributes not by shared variables
- no fixed arity of predicates
- no fixed argument order

	rame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook ○○●○
N	Ny project:	Formal model	ing of frames		
	subjects				
	 ont dyr 	in isolation cological status of namic attributes us: space of attrib			
	operelationfoc	in interaction erations on frames ations between fra us: space of frame	imes (type shifts) es		
	-	nodels of dynam	•		

- changes of attribute values in time
- focus: linking object frames with the temporal domain

Aim

Frame-based cognitive semantics explaining both decompositional and compositional phenomena in a unified way

Wiebke Petersen

Frame hypothesis	Frames 00000000000	1st perspective	2nd perspective	Outlook ○○○●
literature				

- Barsalou, L. (1992): Frames, Concepts, and Conceptual Fields. In Lehrer and Kittay (eds.): Frames, Fields, and Contrasts.
- Carpenter, B. (1992): *The Logic of Typed Feature Structures*. Cambridge: CUP.
- Ganter, B. and Wille, R. (1998): Formal Concept Analysis: Mathematical Foundations. Berlin: Springer.
- Guarino, N. (1992): Concepts, attributes and arbitrary relations some linguistic and ontological criteria for structuring knowledge bases. Data Knowl. Eng. 8, 249-261
- Petersen, W. (2007): Representation of Concepts as Frames. In: The Baltic International Yearbook of Cognition, Logic and Communication, Vol. 2, p. 151-170.
- Petersen, W. (2008): Type Signature Induction with FCAType. In: S. B. Yahia, E. Mephu Nguifo, R. Belohlavek (eds.): *Concept Lattices and Their Applications*. LNAI 4923, p. 276-281, Springer.
- Shieber, S. M. (1986): An Introduction to Unification-Based Approaches to Grammar. Stanford: CSLI Publications.

Frame graphs	Type shifts oo	Composition
outline		

Type shifts

Frame graphs
••••••

concept classification

person, pope, house, verb, sun, Mary, wood, brother, mother, meaning, distance, spouse, argument, entrance

rame graphs	Type shifts	Composition
000000000	00	000

concep	t classification:	relationality
--------	-------------------	---------------

non-relational	person, wood	pope,	house,	verb,	sun,	Mary,
relational	brother, spouse,		-	•	, dis	stance,

Löbner

Fra o e

Frame graphs	Type shifts	Composition
00000000000	00	000

concept classification: uniqueness of reference

	non-unique refer- ence	unique reference
non-relational	person, house, verb, wood	Mary, pope, sun
relational	brother, argument, entrance	mother, meaning, distance, spouse

Löbner

Frame graphs
00000000000

concept classification

	non-unique refer- ence	unique reference
non-relational	sortal concept	individual con- cept
relational	proper relational concept	functional con- cept

Löbner

Frame graphs	
00000000000000000	

concept classification

	non-unique refer- ence	unique reference
non-relational	sortal concept	individual con- cept
relational	proper relational concept	functional con- cept

Löbner

terminology

Definition

A node is a root of a frame if all other nodes can be reached from it by a path of directed arcs.

Type shifts

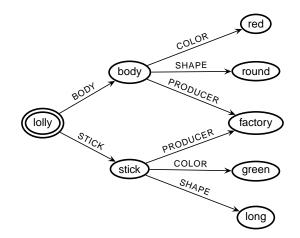
terminology

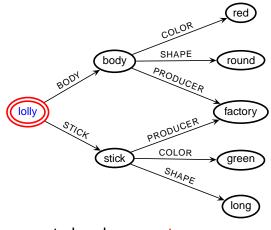
Definition

A node is a root of a frame if all other nodes can be reached from it by a path of directed arcs.

Definition

A node is a source if it has no incoming arc.



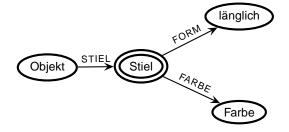


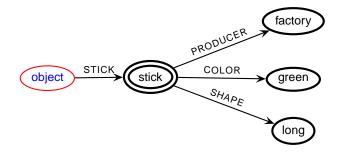
central node = root = source

 Frame graphs
 Type shifts
 Composition

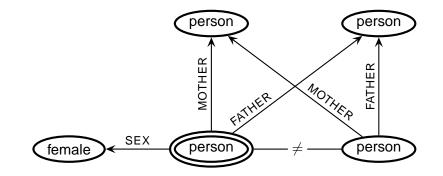
 ooc
 oo
 oo

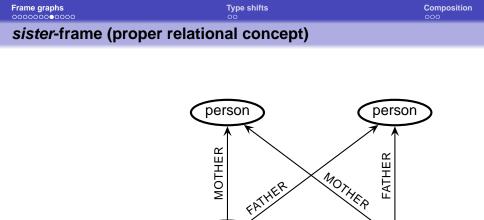
 stick-frame (functional concept)
 oo





central node \neq root = source





no root & central node = source

person

SEX

female

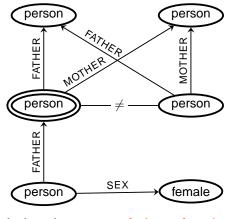
person

Frame graphs ○○○○○○○●○○○	Type shifts ○○	Composition	
classification of acyclic fra	me graphs		

C = R	C = S	∃R	∃S	typical graph	frame class
+	+	+	+		sortal
_	_	+	+	$\rightarrow < ^{\circ}$	functional
_	+	_	+	<	proper relational
_	_	_	+	$\rightarrow $???

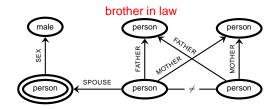
C: central node, R: root, S: source

Frame graphs ○○○○○○○○●○○	Type shifts oo	Composition
4th frame class: not lexical	ized?	

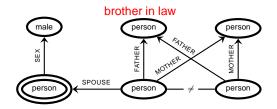


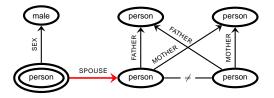
relational concept: father of a niece

Frame graphs ○○○○○○○○○●○	Type shifts oo	Composition
4th frame class: n	ot lexicalized?	

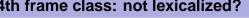


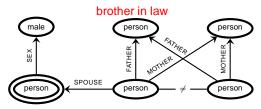
Frame graphs ০০০০০০০০০০●০	Type shifts oo	Composition
4th frame class: not lexical	lized?	



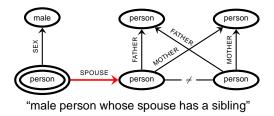


Frame graphs oooooooooooooo	Type shifts	Composition
4th frame class: n	ot lexicalized?	





"male person who is the spouse of someone who has a sibling"



Frame graphs ooooooooooooo	Type shifts oo	Composition
concept classification and f	rame graphs	

relationality

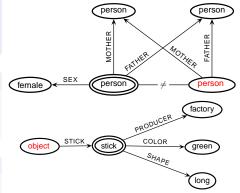
The arguments of relational concepts are modeled in frames as sources that are not identical to the central node.

functionality

The functionality of functional concepts is modeled by an incoming arc at the central node.

conclusion

The concept classification is reflected by the properties of the frame graphs.



concont classificat	ion and frame graphs	
00000000000	00	000
Frame graphs	Type shifts	Composition

relationality

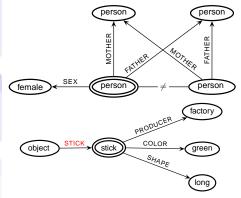
The arguments of relational concepts are modeled in frames as sources that are not identical to the central node.

functionality

The functionality of functional concepts is modeled by an incoming arc at the central node.

conclusion

The concept classification is reflected by the properties of the frame graphs.



concont classificat	ion and frame granhs	
0000000000		
Frame graphs	Type shifts	Composition

relationality

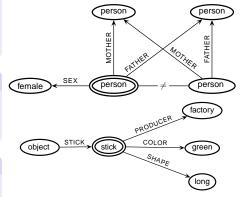
The arguments of relational concepts are modeled in frames as sources that are not identical to the central node.

functionality

The functionality of functional concepts is modeled by an incoming arc at the central node.

conclusion

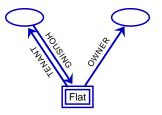
The concept classification is reflected by the properties of the frame graphs.



Frame graphs	Type shifts	Composition
outline		

Frame graphs	Type shifts ●○	Composition
type shifts: non-relation	onal $ ightarrow$ relational	

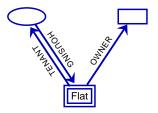
sortal	individual	$ \downarrow$
proper relational	functional	



sortal concept flat: "Many flats are offered in the newspaper."

type shifts: non-relationa	•••	000
Frame graphs	Type shifts	Composition

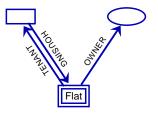
sortal	individual]↓
proper relational	functional	



proper relational concept flat: "This flat is a flat of John, he owns more than five."

type shifts: non-relationa	•••	000
Frame graphs	Type shifts	Composition

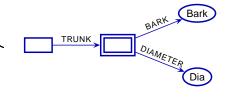
sortal	individual	$ \downarrow$
proper relational	functional	



functional concept flat: "The flat of Mary is huge and the rent is reasonable."

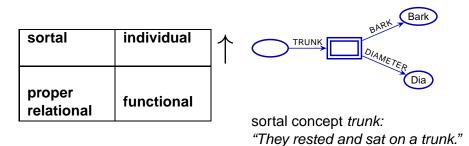
Frame graphs	Type shifts ○●	Composition
type shifts: relation	al \rightarrow non-relational	

sortal	individual	1
proper relational	functional	



functional concept *trunk:* "She sat with her back against the trunk of an oak."

Frame graphs	Type shifts ○●	Composition
type shifts: relational -	→ non-relational	



Frame graphs	Type shifts	Composition
outline		

Type shifts

Frame graphs Type shifts Composition occorrection occorrection occorrection hypothesis: composition works uniformly with respect to concept types occorrection

RC			\mapsto	SC	finger OF woman
RC	_		\mapsto	SC	finger OF Mary
	OF ∐		\mapsto	RC	finger OF friend
RC	OF ∐	FC	\mapsto	RC	finger OF spouse
FC	_		\mapsto	SC	head OF woman
	OF ∐		\mapsto	IC	head OF Mary
FC	OF ∐	RC	\mapsto	RC	head OF friend
FC	OF ∐	FC	\mapsto	FC	head OF spouse

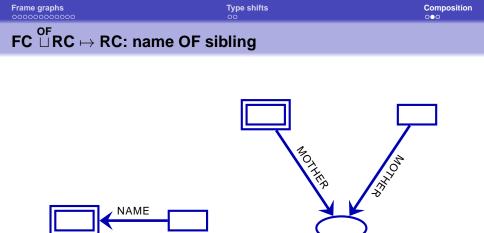
proper relational concepts:

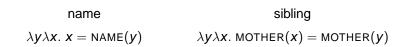
type of composed concept = relational type of possessor concept

functional concepts:

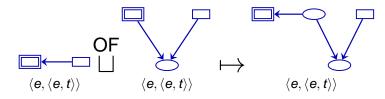
type of composed concept = referential + relational type of possessor concept

Löbner





Frame graphs	Type shifts ○○	Composition ○○●				
$FC \stackrel{OF}{\sqcup} RC \mapsto RC:$ name OF sibling						

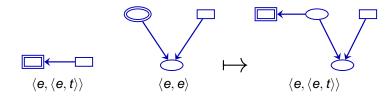


$$\lambda y' \lambda x'. x' = f(y') \stackrel{\mathsf{OF}}{\sqcup} \lambda y' \lambda x'. S(x', y') \mapsto \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$$

FC o(\varepsilon RC)

 $\langle e, \langle e, t \rangle \rangle \circ (\langle \langle e, t \rangle, e \rangle \circ \langle e, \langle e, t \rangle \rangle) \mapsto \langle e, \langle e, t \rangle \rangle \circ \langle e, e \rangle \mapsto \langle e, \langle e, t \rangle \rangle$

Frame graphs	Type shifts	Composition ○○●				
$FC \stackrel{OF}{\sqcup} RC \mapsto RC:$ name OF sibling						



$$\lambda y' \lambda x'. x' = f(y') \stackrel{\mathsf{OF}}{\sqcup} \lambda y' \lambda x'. S(x', y') \mapsto \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$$

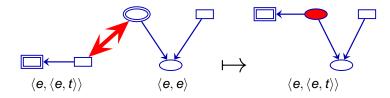
FC o(eo RC)

 $\langle e, \langle e, t \rangle \rangle \circ (\langle \langle e, t \rangle, e \rangle \circ \langle e, \langle e, t \rangle \rangle) \mapsto \langle e, \langle e, t \rangle \rangle \circ \langle e, e \rangle \mapsto \langle e, \langle e, t \rangle \rangle$

 $\circ \mathsf{RC:} \ \lambda y'(\lambda \mathsf{Q}. \varepsilon u. \ \mathsf{Q}(u)(\lambda x'. \ \mathsf{S}(x', y'))) \rightarrow_{\beta} \ \lambda y'(\varepsilon u. \ \lambda x'. \ \mathsf{S}(x', y')(u)) \rightarrow_{\beta} \lambda y'. \ \varepsilon u. \ \mathsf{S}(u, y')$

FC
$$\circ(\varepsilon \circ \text{RC}): (\lambda y \lambda x. x = f(y)) \circ (\lambda y'.\varepsilon u. S(u, y')) \rightarrow \lambda y'(\lambda y \lambda x. x = f(y)(\varepsilon u. S(u, y'))) \rightarrow_{\beta} \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$$

Frame graphs	Type shifts	Composition
০০০০০০০০০০০	○○	○○●
FC ^{OF} □ RC → RC: nar	ne OF sibling	



$$\lambda y' \lambda x'. x' = f(y') \stackrel{\mathsf{OF}}{\sqcup} \lambda y' \lambda x'. S(x', y') \mapsto \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$$

 $FC \circ (\varepsilon \circ RC)$

 $\langle e, \langle e, t \rangle \rangle \circ (\langle \langle e, t \rangle, e \rangle \circ \langle e, \langle e, t \rangle \rangle) \mapsto \langle e, \langle e, t \rangle \rangle \circ \langle e, e \rangle \mapsto \langle e, \langle e, t \rangle \rangle$

 $\underbrace{\bullet}_{\lambda y'} \varepsilon \circ \operatorname{RC:} \lambda y'(\lambda Q, \varepsilon u, Q(u)(\lambda x', S(x', y'))) \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x', S(x', y')(u)) \rightarrow_{\beta} \lambda y', \varepsilon u, S(u, y') \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x', S(x', y')(u)) \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x') \rightarrow_{\beta} \lambda y'(\varepsilon u, \lambda x')$

FC
$$\circ(\varepsilon \circ \text{RC}): (\lambda y \lambda x. x = f(y)) \circ (\lambda y'.\varepsilon u. S(u, y')) \rightarrow \lambda y'(\lambda y \lambda x. x = f(y)(\varepsilon u. S(u, y'))) \rightarrow_{\beta} \lambda y' \lambda x. x = f(\varepsilon u. S(u, y'))$$