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The discipline Applications Language

Common names

Computational Linguistics (CL)

Natural Language Processing (NLP)

Language Engineering

Human Language Technology (HLT)
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The discipline Applications Language

computational linguistics (broad sense): interdisciplinary research
�eld (between linguistics and computer science) which develops
concrete algorithms for natural language processing (machine
translation, machine speech recognition ...)

computational linguistics (narrow sense): discipline in modern
linguistics which develops, implements and investigates
computational models of human language.
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Theoretical CL (Uszkoreit: What is CL?)

Theoretical CL takes up issues in theoretical linguistics and
cognitive science.

It deals with formal theories about the linguistic knowledge that a
human needs for generating and understanding language

Computational linguists develop formal models simulating aspects
of the human language faculty and implement them as computer
programmes.
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Applied CL (Uszkoreit: What is CL?)

Applied CL focusses on the practical outcome of modeling human
language use. (other terms: HLT, NLP)

The goal is to create software products that have some knowledge
of human language.

Such products are going to change our lives. They are urgently
needed for improving human-machine interaction since the main
obstacle in the interaction between human and computer is a
communication problem, the use of human language can increase
the acceptance of software and the productivity of its users.
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The discipline Applications Language

advanced NLP applications

dialogue systems / conversational agents

simpli�es human-computer interaction

machine translation

simpli�es human-human interaction

question answering

simpli�es usage of the web

simpler NLP applications

spell checking

grammar checking

word count
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The discipline Applications Language

machine translation

state of the art

http://translate.google.com/translate_t

source Computational linguistics is an
interdisciplinary �eld dealing with the
statistical and rule-based modeling of
natural language from a computational
perspective.

target Datorlingvistika ir starpdisciplin	ar	a jom	a
nodarbojas ar statistikas un uz likumu
balst	�tas model	e²anas dabas valodu no
skaitlo²anas viedokla.

Computational Linguistics Wiebke Petersen

http://translate.google.com/translate_t


The discipline Applications Language

machine translation

Lidziga sun you bring us

days,

Wisdom verige long you

provide.

Celdamas itself ever higher,

People put you in higher

take o�.

Latvia and the Latvian

celebrity prettiness,

Arts and the Knowledge

refuge there.

Unfamiliar to the oak trees

inde�nitely showing no

All as the eternal �re.

Lidziga saulei Tu atnes

mums dienu,

Gudribu verigiem gariem Tu

sniedz.

Celdamas augstaku pati

arvienu,

Tautai Tu augstaku pacelties

liec.

Latvijas slava un Latvijas

glitums,

Makslam un zinibam

patverums tur.

Svess lai, ka ozoliem

muzigiem, vitums

Visiem, kas muzigu uguni

kur.

Anthem �Latvijas Universitatei�
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Sometimes human �translations� go wrong too!

Welsh text reads: �I am not in the o�ce at the moment. Send any
work to be translated.�
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question answering

possible questions

What does �divergent� mean?

What year was Abraham Lincoln
born?

How many states were in the
United States that year?

What do scientists think about the
ethics of human cloning?

What is the connection between CL
and NLP?

Who is the rector of the university
of Riga?

How far is Berlin from Riga?

What kind of language is Latvian?
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conversational agents
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conversational agents

Interaction with HAL 9000 the
computer in Stanley Kubrick's �lm
�2001: A Space Odyssey�:

Dave Bowman: Open the pod bay
doors, HAL.

HAL: I'm sorry Dave, I'm afraid I can't
do that.

required language knowledge

speech recognition

natural language
understanding

natural language generation

speech synthesis

http://www-306.ibm.com/software/pervasive/tech/demos/tts.shtml
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Knowledge needed to build HAL?

Speech recognition and synthesis
Dictionaries (how words are pronounced)
Phonetics (how to recognize/produce each sound of English)

Natural language understanding
Knowledge of the English words involved

– What they mean
– How they combine (what is a `pod bay door’?)

Knowledge of syntactic structure
– I’m I do, Sorry that afraid Dave I’m can’t
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What’s needed?

Dialog and pragmatic knowledge
“open the door” is a REQUEST (as opposed to a 
STATEMENT or information-question)
It is polite to respond, even if you’re planning to kill 
someone.
It is polite to pretend to want to be cooperative (I’m 
afraid, I can’t…)
What is `that’ in `I can’t do that’?

Even a system to book airline flights needs much of 
this kind of knowledge
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fascination language

Language is an ability which is special to humans

Humans are able to express and understand complex thoughts in
seconds.

Children are able to learn language within a few years.
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grammar
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complexity of language

Latvian, German, English, Chinese, . . .

vague, ambiguous,

ambiguities:

lexical ambiguities (call me tomorrow - the call of the beast)
structural ambiguities:

the woman sees the man with the binoculars

the woman sees the man with the binoculars

only experts: humans

natural languages develop
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Ambiguity

Find at least 5 meanings of this sentence:
I made her duck
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Ambiguity

Find at least 5 meanings of this sentence:
I made her duck

I cooked waterfowl for her benefit (to eat)
I cooked waterfowl belonging to her
I created the (plaster?) duck she owns
I caused her to quickly lower her head or body
I waved my magic wand and turned her into undifferentiated 
waterfowl
At least one other meaning that’s inappropriate for gentle 
company.
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Ambiguity is Pervasive

I caused her to quickly lower her head or body
Lexical category: “duck” can be a N or V

I cooked waterfowl belonging to her.
Lexical category: “her” can be a possessive (“of her”)  
or dative (“for her”) pronoun

I made the (plaster) duck statue she owns
Lexical Semantics: “make” can mean “create” or 
“cook”
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Ambiguity is Pervasive

Grammar: Make can be:
Transitive: (verb has a noun direct object)
– I cooked [waterfowl belonging to her]

Ditransitive: (verb has 2 noun objects)
– I made [her] (into) [undifferentiated waterfowl]

Action-transitive (verb has a direct object and 
another verb)
I caused [her] [to move her body]
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Ambiguity is Pervasive

Phonetics!
I mate or duck
I’m eight or duck
Eye maid; her duck
Aye mate, her duck
I maid her duck
I’m aid her duck
I mate her duck
I’m ate her duck
I’m ate or duck
I mate or duck
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Exercise: Introduction

Exercise 1

Experiment on the following machine translators (e.g., Latvian � English,
English � Latvian)
http: // translate. google. com/ translate_ t

http: // babelfish. altavista. com/

Try to identify problematic structures which result in faulty
translations
Try to �nd reasons for the translation problems

Experiment on the following question answering systems
http: // www. ask. com/

http: // start. csail. mit. edu/

Compare the systems
Which kind of question is answered adequately?
Which kind of question cannot be answered by the systems?

Computational Linguistics Wiebke Petersen
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sets

Georg Cantor (1845-1918)

By a set we mean any collection M
into a whole of de�nite, distinct
objects x (which are called the
elements of M) of our perception
or of our thought.
Two sets are equal i� they have
precisely the same members.
The empty set ∅ is the set which
has no elements.
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notation

x ∈ M : x is an element of set M.

M ⊂ N : set M is a subset of set N, i.e., every element of set M
is an element of set N.

set description

extensional set description {a1, a2, . . . , an} is the set which has the
elements a1, a2, . . . , an.
Example: {2, 3, 4, 5, 6, 7}

intensional set description {x |A} is the set consisting of all
elements x which ful�ll statement A.
Example: {x |x ∈ N and x < 8 and 1 < x }

Computational Linguistics Wiebke Petersen
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operations on sets

intersection: A ∩ B

union: A ∪ B

di�erence: A \ B

complement (in U): CU(A)
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Alphabets and words

De�nition

alphabet Σ: nonempty, �nite set of symbols

word: a �nite string x1 . . . xn of symbols.

length of a word |w |: number of symbols of a word w (example:
|abbaca| = 6)

empty word ε: the word of length 0

Σ∗ is the set of all words over Σ

Σ+ is the set of all nonempty words over Σ (Σ+ = Σ∗ \ {ε})
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Exercise: alphabets and words

Exercise 2

Let Σ = {a, b, c}:
Write down a word of length 4.

Which of the following expressions is a word and of what length is
it:
`aa', `caab', `da'

What is the di�erence between Σ∗ and Σ+?

How many elements do Σ∗ and Σ+ have?
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Preliminaries: sets Alphabets and words formal languages

Operations on words: Concatenation

De�nition

The concatenation of two words w = a1a2 . . . an and v = b1b2 . . . bm
with n,m ≥ 0 is

w ◦ v = a1 . . . anb1 . . . bm

Sometimes we write uv instead of u ◦ v.

w ◦ ε = ε ◦ w = w neutral element

u ◦ (v ◦ w) = (u ◦ v) ◦ w associativity

Computational Linguistics Wiebke Petersen
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Operations on words: exponents and reversals

Exponents

wn: w concatenated n-times with itself.

w0 = ε : w concatenated `0-times' with itself.

Reversals

The reversal of a word w is denoted wR

(example: (abcd)R = dcba.

A word w with w = wR is called a palindrome.

(madam, mum, otto, anna,. . . )
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Exercise: Operations on words

Exercise 3

If w = aabc and v = bcc are words, evaluate:

w ◦ v
((wR ◦ v)R)2

w ◦ (vR ◦ w3)0

Computational Linguistics Wiebke Petersen
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Formal language

De�nition

A formal language L is a set of words over an alphabet Σ.

Examples:

language Lpal of the palindromes in English
Lpal = {mum, madam, . . . }
language LMors of the letters of the latin alphabet encoded in the
Morse code: LMors = {·−,− · ··, . . . ,−− ··}
the empty set

the set of words of length 13 over the alphabet {a, b, c}
English?
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Describing formal languages by enumerating all
words

Peter says that Mary has fallen o� the tree.

Oskar says that Peter says that Mary has fallen o� the tree.

Lisa says that Oskar says that Peter says that Mary has fallen o�
the tree.

. . .

The set of strings of a natural language is in�nite.

The enumeration does not gather generalizations.

Computational Linguistics Wiebke Petersen
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Describing formal languages by grammars

Grammar

A formal grammar is a generating device which can generate (and
analyze) strings/words.

Grammars are �nite rule systems.

The set of all strings generated by a grammar is the formal
language generated by the grammar.

S → NP VP VP → V NP → D N
D → the N → cat V → sleeps

Generates: the cat sleeps

Computational Linguistics Wiebke Petersen
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Describing formal languages by automata

Automaton

An automaton is a recognizing device which accepts
strings/words.

The set of all strings accepted by an automaton is the formal
language accepted by the automaton.

Computational Linguistics Wiebke Petersen
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Language concatenation

De�nition

The concatenation of K and L is the formal language:

K ◦ L := {v ◦ w ∈ Σ∗|v ∈ K ,w ∈ L}

Ln = L ◦ L ◦ L . . . ◦ L︸ ︷︷ ︸
n-times

L∗ :=
⋃

n≥0
Ln. Note: ε ∈ L∗ for any language L.
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Language concatenation

Example 1

K = {abb, a} and L = {bbb, ab}
K ◦ L =

{abbbbb, abbab, abbb, aab} and
L ◦ K = {bbbabb, bbba, ababb, aba}
K ◦ ∅ = ∅
K ◦ {ε} = K

K 2 = {abbabb, abba, aabb, aa}

Computational Linguistics Wiebke Petersen
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Exercise: formal languages

Exercise 4

If K = {aa, aaaa, ab} and L = {bb, aa} are languages, evaluate

1 K ◦ L
2 L ◦ K
3 {ε} ◦ L
4 {ε} ◦ ∅
5 K ◦ ∅
6 K 3

7 K \ L
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Part III

Finite State Automatons and Regular
Languages
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Outline

7 regular expressions

8 �nite state automatons
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Regular expressions

RE: syntax

The set of regular expressions REΣ over an alphabet Σ = {a1, . . . , an}
is de�ned by:

∅ is a regular expression.

ε is a regular expression.

a1, . . . , an are regular expressions

If a and b are regular expressions over Σ then

(a + b)
(a • b)
(a?)

are regular expressions too.

(The brackets are frequently omitted w.r.t. the following dominance scheme:

? dominates • dominates +)
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Regular expressions

RE: semantics

Each regular expression r over an alphabet Σ describes a formal
language L(r) ⊆ Σ∗.
Regular languages are those formal languages which can be described
by a regular expression.
The function L is de�ned inductively:

L(∅) = ∅, L(ε) = {ε}, L(ai ) = {ai}
L(a + b) = L(a) ∪ L(b)

L(a • b) = L(a) ◦ L(b)
L(a?) = L(a)∗
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Exercise: regular expressions

Exercise 5

Find a regular expression which describes the regular language L (be
careful: at least one language is not regular!)

L is the language over the alphabet {a, b} with
L = {aa, ε, ab, bb}.
L is the language over the alphabet {a, b} which consists of all
words which start with a nonempty string of a's followed by any
number of b's

L is the language over the alphabet {a, b} such that every a has a
b immediately to the right.

L is the language over the alphabet {a, b} which consists of all
words which contain an even number of a's.

L is the language of all palindromes over the alphabet {a, b}.
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What we know so far about formal languages

Formal languages are sets of words (NL: sets of sentences) which
are strings of symbols (NL: words).

Everything in the set is a �grammatical word�, everything else
isn't.

Some formal languages, namely the regular ones, can be
described by regular expressions
Example: (a? • b • a? • b • a?)? is the regular language consisting
of all words over the alphabet {a, b} which contain an even
number of b's.

Not all formal languages are regular (We have not proven this
yet!).
Example: The formal language of all palindromes over the
alphabet {a, b} is not regular.
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Deterministic �nite-state automaton (DFSA)

De�nition

A deterministic �nite-state automaton is a tuple 〈Q,Σ, δ, q0,F 〉 with:
1 a �nite, non-empty set of states Q

2 an alphabet Σ with Q ∩ Σ = ∅
3 a partial transition function δ : Q × Σ → Q

4 an initial state q0 ∈ Q and

5 a set of �nal/accept states F ⊆ Q.

accepts: L(a?ba?)
Computational Linguistics Wiebke Petersen
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partial/total transition function

FSA with partial transition function

accepts ab?a

transition table

FSA with complete transition function

accepts ab?a

transition table
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Example DfSA / NDFSA

The language L(ab? + ac?) is accepted by
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Nondeterministic �nite-state automaton NDFSA

De�nition

A nondeterministic �nite-state automaton is a tuple 〈Q, Σ, ∆, q0,F 〉 with:
1 a �nite non-empty set of states Q

2 an alphabet Σ with Q ∩ Σ = ∅
3 a transition relation ∆ ⊆ Q × Σ× Q

4 an initial state q0 ∈ Q and

5 a set of �nal states F ⊆ Q.

Theorem

A language L can be accepted by a DFSA i� L can be accepted by a NFSA.

Note: Even automatons with ε-transitions accept the same languages like

NDFSA's.
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Automaton with ε-transition
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Exercise 6

Give an FSA for each of the following languages over the alphabet
{a, b} (and try to make it deterministic):

L = {w | between each two `b's in w there are at least two `a's}
L = {w |w is any word except �ab�}
L = {w |w does not contain the in�x �ba�}
L = {w |w contains at most three `b's}
L = {w |w contains an even number of `a's}
L((a?b)?ab?)

L(a?(bb)?)

L(ab?b).

L((ab? + ba?a))

Computational Linguistics Wiebke Petersen



regular expressions �nite state automatons

Finite-state automatons accept regular languages

Theorem (Kleene)

Every language accepted by a DFSA is regular and every regular
language is accepted by some DFSA.

proof idea (one direction): Each regular language is accepted by a

NDFSA:

Computational Linguistics Wiebke Petersen
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Proof of Kleene's theorem (cont.)

If R1 and R2 are two regular expressions such that the languages L(R1)
and L(R2) are accepted by the automatons A1 and A2 respectively,
then L(R1 + R2) is accepted by:
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Proof of Kleene's theorem (cont.)

L(R1 • R2) is accepted by:
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Proof of Kleene's theorem (cont.)

L(R∗
1 ) is accepted by:
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Closure properties of regular languages

Theorem

1 If L1 and L2 are two regular languages, then

the union of L1 and L2 (L1 ∪ L2) is a regular language too.
the intersection of L1 and L2 (L1 ∩ L2) is a regular language too.
the concatenation of L1 and L2 (L1 ◦ L2) is a regular language too.

2 The complement of every regular language is a regular language too.

3 If L is a regular language, then L∗ is a regular language too.

Exercise 7

Prove the theorem.
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Pumping lemma for regular languages

Lemma (Pumping-Lemma)

If L is an in�nite regular language over Σ, then there exists words
u, v ,w ∈ Σ∗ such that v 6= ε and uv iw ∈ L for any i ≥ 0.

proof sketch:

Any regular language is accepted by a DFSA with a �nite number
n of states.

Any in�nite language contains a word z which is longer than n
(|z | ≥ n).

While reading in z , the DFSA passes at least one state qj twice.
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Pumping lemma for regular languages (cont.)

Lemma (Pumping-Lemma)

If L is an in�nite regular language over Σ, then there exists words
u, v ,w ∈ Σ∗ such that v 6= ε and uv iw ∈ L for any i ≥ 0.

proof sketch:
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L = {anbn : n ≥ 0} is not regular

L = {anbn : n ≥ 0} is in�nite.

Suppose L is regular. Then there exists u, v ,w ∈ {a, b}∗, v 6= ε
with uvnw ∈ L for any n ≥ 0.

We have to consider 3 cases for v .

1 v consists of a's and b's.
2 v consists only of a's.
3 v consists only of b's.
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Exercise: pumping lemma

Exercise 8

Are the following languages regular?

1 L1 = {w ∈ {a, b}∗ : w contains an even number of b′s}.
2 L2 = {w ∈ {a, b}∗ : w contains as many b′s as a′s}.
3 L3 = {wwR ∈ {a, b}∗ : wwR is a palindrome over {a, b}∗}.
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Intuitive rules for regular languages

L is regular if it is possible to check the membership of a word
simply by reading it symbol for symbol while using only a �nite
stack.

Finite-state automatons are too weak for:

counting in N (�same number as�);
recognizing a pattern of arbitrary length (�palindrome�);
expressions with brackets of arbitrary depth.
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Summary: regular languages
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Prolog: the basics

facts: state things that are unconditionally true of the domain of
interest.
human(sokrates).

rules: relate facts by logical implications.
mortal(X) :- human(X).

head: left hand side of a rule
body: right hand side of a rule
clause: rule or fact.
predicate: collection of clauses with identical heads.

knowledge base: set of facts and rules

queries: make the Prolog inference engine try to deduce a positive
answer from the information contained in the knowledge base.
?- mortal(sokrates).
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Prolog: some syntax

facts: fact.

rules: head :- body.

conjunction: head :- info1 , info2.

atoms start with small letters

variables start with capital letters

Exercise: father(X,Y) :- parent(X,Y), male(X).
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lists in Prolog

Lists are recursive data structures: First, the empty list is a list.
Second, a complex term is a list if it consists of two items, the
�rst of which is a term (called �rst), and the second of which is a
list (called rest).

[mary|[john|[alex|[tom|[]]]]]

simpler notation: [mary,john,alex,tom]

Exercise: Write a predicate member/2.

Computational Linguistics Wiebke Petersen



Prolog

% Finite state automaton.

fsa(Tape):-

initial(S),

fsa(Tape,S).

fsa([],S):- final(S).

fsa([H|T],S):-

trans_tab(S,H,NS),

fsa(T,NS).

% FSA transition table:

% trans_tab/3

% trans_tab(State, Input, New State)

trans_tab(1,a,1).

trans_tab(1,b,2).

trans_tab(2,a,2).

initial(1).

final(2).
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Part VI

Context Free Grammars
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Formal grammar

De�nition

A formal grammar is a 4-tupel G = (N,T ,S ,P) with

an alphabet of terminals T ,

an alphabet of nonterminals N with N ∩ T = ∅,
a start symbol S ∈ N,

a �nite set of rules/productions
P ⊆ {〈α, β〉 | α, β ∈ (N ∪ T )∗ and α 6∈ T ∗}.

Instead of 〈α, β〉 we write also α → β.

S → NP VP VP → V NP → D N
D → the N → cat V → sleeps

Generates: the cat sleeps

Computational Linguistics Wiebke Petersen



Formal Grammars Context-free languages

Formal grammar

Vocabulary

Let G = (N,T ,S ,P) be a grammar and v ,w ∈ (T ∪ N)∗:

v is directly derived from w (or w directly generates v), w → v if
w = w1αw2 and v = w1βw2 such that 〈α, β〉 ∈ P.

v is derived from w (or w generates v), w →∗ v if there exists
w0,w1, . . .wk ∈ (T ∪N)∗ (k ≥ 0) such that w = w0, wk = v and wi−1 → wi

for all k ≥ i ≥ 0.

→∗ denotes the re�exive transitive closure of →
L(G) = {w ∈ T ∗|S →∗ w} is the formal language generated by the grammar
G .

S → NP VP VP → V NP → D N
D → the N → cat V → sleeps

Generates: the cat sleeps
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Example

G1 = 〈{S,NP,VP,N,V,D,N,EN}, {the, cat, peter, chases},S,P〉

P =

8<
:

S → NP VP VP → V NP NP → D N
NP → EN D → the N → cat
EN → peter V → chases

9=
;

L(G1) =

�
the cat chases peter peter chases the cat
peter chases peter the cat chases the cat

�

�the cat chases peter� can be derived from S by:

S → NP VP → NP V NP → NP V EN
→ NP V peter → NP chases peter → D N chases peter
→ D cat chases peter → the cat chases peter
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Derivation tree

S
����

����
NP
����

D

the

N

cat

VP
�
�

�
�

V

chases

NP

EN

peter
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Chomsky-hierarchy

A grammar (N,T ,S ,P) is a

(right-linear) regular grammar (REG): i� every
production is of the form
A→ βB or A→ β with A,B ∈ N and β ∈ T ∗

context-free grammar (CFG): i� every production is of
the form A→ β with A ∈ N and β ∈ (N ∪ T )∗.

context-sensitive grammar (CS): i� every production is
of the form
γAδ → γβδ with γ, δ, β ∈ (N∪T )∗,A ∈ N and β 6= ε;
or of the form S → ε, in which case S does not occur
on any right-hand side of a production.

recursively enumerable grammar (RE): if it is an
arbitrary formal grammar.
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Main theorem

L(REG) ⊂ L(CG) ⊂ L(CS) ⊂ L(RE)

Main theorem

L(REG) ⊂ L(CG) ⊂ L(CS) ⊂ L(RE)

L(RE)

L(CS)

L(CG)

L(REG)
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regular languages

De�nition

A grammar (N,T ,S ,P) is a right-linear regular grammar i� all productions
are of the form:

A→ w or A→ wB with A,B ∈ N and w ∈ T ∗.

Theorem

Every language generated by a right-linear regular grammar is a regular
language and for every regular language there exists a right-linear regular
grammar which generates it.

Exercise 9

Prove the proposition.

Computational Linguistics Wiebke Petersen



Formal Grammars Context-free languages

regular languages

De�nition

A grammar (N,T ,S ,P) is a right-linear regular grammar i� all productions
are of the form:

A→ w or A→ wB with A,B ∈ N and w ∈ T ∗.

Theorem

Every language generated by a right-linear regular grammar is a regular
language and for every regular language there exists a right-linear regular
grammar which generates it.

Exercise 9

Prove the proposition.

Computational Linguistics Wiebke Petersen



Formal Grammars Context-free languages

Proof: Each regular language is right-linear

Σ = {a1, . . . , an}
1 ∅ is generated by ({S},Σ,S , {}),

2 {ε} is generated by ({S},Σ,S , {S → ε}),
3 {ai} is generated by ({S},Σ,S , {S → ai}),
4 If L1, L2 are regular languages with generating right-linear grammars

(N1,T1,S1,P1), (N2,T2,S2,P2), then L1 ∪ L2 is generated by
(N1 ] N2,T1 ∪ T2,S ,P1 ∪] P2 ∪ {S → S1,S → S2}),

5 L1 ◦ L2 is generated by (N1 ]N2,T1 ∪T2,S1,P
′
1
∪] P2) (P ′

1
is obtained

from P1 if all rules of the form A→ w (w ∈ T ∗) are replaced by
A→ wS2),

6 L∗
1
is generated by (N1,Σ,S1,P

′
1
∪ {S1 → ε}) (P ′

1
is obtained from P1

if all rules of the form A→ w (w ∈ T ∗) are replaced by A→ wS1).
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Formal Grammars Context-free languages

context-free grammars

De�nition

A grammar (N,T ,S ,P) is context-free if all production rules are of the form:

A→ α, with A ∈ N and α ∈ (T ∪ N)∗.

A language generated by a context-free grammar is said to be context-free.

Theorem

The set of context-free languages is a strict superset of the set of regular languages.

Proof: Each regular language is per de�nition context-free. L(anbn) is context-free

but not regular (S → aSb,S → ε).

Computational Linguistics Wiebke Petersen
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Formal Grammars Context-free languages

Examples of context-free languages

L1 = {wwR : w ∈ {a, b}∗}
L2 = {aibj : i ≥ j}
L3 = {w ∈ {a, b}∗ : more a′s than b′s}
L4 = {w ∈ {a, b}∗ : number of a′s equals number of b′s}


S → aB A → a B → b
S → bA A → aS B → bS

A → bAA B → aBB


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Formal Grammars Context-free languages

Derivation tree

G1 = 〈{S,NP,VP,N,V,D,N,EN}, {the, cat, peter, chases},S,P〉

P =

8<
:

S → NP VP VP → V NP NP → D N
NP → EN D → the N → cat
EN → peter V → chases

9=
;

S
����
����

NP
����

D

the

N

cat

VP
�
�

�
�

V

chases

NP

EN

peter

One derivation determines one derivation tree, but

the same derivation tree can result from di�erent derivations.

Computational Linguistics Wiebke Petersen



Formal Grammars Context-free languages

Ambiguous grammars and ambiguous languages

De�nition

Given a context-free grammar G: A derivation which always replaces
the left furthest nonterminal symbol is called left-derivation

De�nition

A context-free grammar G is ambiguous i� there exists a w ∈ L(G )
with more than one left-derivation, S →∗ w.

De�nition

A context-free language L is ambiguous i� each context-free grammar
G with L(G ) = L is ambiguous.

Left-derivations and derivation trees determine each other!

Computational Linguistics Wiebke Petersen
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Formal Grammars Context-free languages

Example of an ambiguous grammar

G = (N,T ,NP,P) with N = {D,N,P,NP,PP}, T = {the, cat, hat, in},

P =

 NP → D N D → the N → hat
NP → NP PP N → cat P → in
PP → P NP



CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

context-free grammars

Example of an ambiguous grammar

G = (N, T , NP, P) with N = {D, N, P, NP, PP}, T = {the, cat, hat, in},

P =







NP → D N D → the N → hat
NP → NP PP N → cat P → in
PP → P NP







NP� � � � ������
NP� � �			

NP
 
��
D

the

N

cat

PP� �


P

in

NP
 
��
D

the

N

hat

PP� �


P

in

NP
 
��
D

the

N

hat

NP� � � �����
NP
 
��

D

the

N

cat

PP� � � �				
P

in

NP� � �			
NP
 
��

D

the

N

hat

PP� �


P

in

NP
 
��
D

the

N

hat
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Formal Grammars Context-free languages

Chomsky Normal Form

De�nition

A grammar is in Chomsky Normal Form (CNF) if all production rules
are of the form

1 A → a

2 A → BC

with A,B,C ∈ T and a ∈ Σ (and if necessary S → ε in which
case S may not occur in any right-hand side of a rule).

Theorem

Each context-free language is generated by a grammar in CNF.

Computational Linguistics Wiebke Petersen



Formal Grammars Context-free languages

Each context-free language is generated by a
grammar in CNF

3 steps

1 Adapt the grammar such that terminals only occur in rules of
type A → a.

2 Eliminate A → B rules.

3 Eliminate A → B1B2 . . .Bn (n > 2) rules.

Computational Linguistics Wiebke Petersen



Formal Grammars Context-free languages

Pumping lemma for context-free languages

pumping lemma

For each context-free language L there exists a p ∈ N such that for
any z ∈ L: if |z | > p, then z may be written as z = uvwxy with

u, v ,w , x , y ∈ T ∗,

|vwx | ≤ p,

vx 6= ε and

uv iwx iy ∈ L for any i ≥ 0.

Computational Linguistics Wiebke Petersen
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Pumping lemma: proof sketch

CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

pumping lemma and closure properties

Pumping lemma: proof sketch

S

A

A

xv ywu

.

..

.

..

S

A

A

xv ywu

.

..

.

..

A.
..

v x

|vwx | ≤ p, vx 6= ε and uv iwx iy ∈ L for any i ≥ 0.
Formal Language Theory Wiebke Petersen

|vwx | ≤ p, vx 6= ε and uv iwx iy ∈ L for any i ≥ 0.
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Existence of non context-free languages

L1 = {anbncn}
L2 = {anbmcndm}
L1 = {ww : w ∈ {a, b}∗}
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Formal Grammars Context-free languages

Closure properties of context-free languages

Theorem

Context-free languages are closed under

union

concatenation

Kleene's star

intersection with a regular language

union: G = (N1 ] N2 ∪ {S},T1 ∪ T2,S ,P) with
P = P1 ∪] P2 ∪ {S → S1,S → S2}

intersection: L1 = {anbnak}, L2 = {anbkak}, but L1 ∩ L2 = {anbnan}
complement: de Morgan

concatenation: G = (N1 ] N2 ∪ {S},T1 ∪ T2,S ,P) with
P = P1 ∪] P2 ∪ {S → S1S2}

Kleene's star: G = (N1 ∪ {S},T1,S ,P) with P = P1 ∪ {S → S1S ,S → ε}
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Chomsky-hierarchy (1956)

CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

Chomsky-hierarchy (1956)

Type 3: REG
finite-state
automaton WP: linear

Type 2: CF
pushdown-
automaton WP: cubic

Type 1: CS

linearly
restricted
automaton

WP:
exponential

Type 0: RE
Turing
machine

WP: not decid-
able

Formal Language Theory Wiebke PetersenComputational Linguistics Wiebke Petersen
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Part VII

Parsing
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introduction simple parsing strategies CYK-parser (Cocke-Kasami-Younger)

example grammar

`syntactical rules'

S → NP VP

VP → V NP

VP → VP PP

NP → NP PP

PP → P NP

`lexical rules'

NP → John

NP → Mary

NP → Denver

V → calls

P → from

Computational Linguistics Wiebke Petersen
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derivation tree

S

VP

NP

PP

NP

Denver

P

from

NP

Mary

V

calls

NP

John
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top-down search

John calls Mary from Denver
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search strategies

top-down

bottom-up

depth-�rst

breadth-�rst

left-to-right

right-to-left
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Example: top-down, depth-�rst, left-to-right parse

S

John calls Mary from Denver
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introduction simple parsing strategies CYK-parser (Cocke-Kasami-Younger)

left-recursion is dangerous for top-down,
left-to-right

additional rules:

NP → D N
D → a
N → friend

Parse �a friend calls Mary from Denver�
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empty expansions are dangerous for bottom-up

additional rules:

NP → D N
D → a
D → ε
N → friend
N → friends

Parse �friends call Mary from Denver�
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problems with simple parsing strategies

top-down: left-recursions

bottom-up: empty expansions

lots of avoidable redoes (example: parse ��ights from Düsseldorf
to Riga by Airbaltic� top-down as an NP)

ambiguities (Example: Show me the meal on the �ight from
Düsseldorf to Riga by Airbaltic)

Computational Linguistics Wiebke Petersen
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CYK-parser (Cocke-Kasami-Younger)

precondition: CFG grammar in CNF

John

NP − S − S1,S2

calls

V VP − VP1,VP2

Mary

NP − NP

from

P PP

Denver

NP
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exercises overview

Exercise 1

Exercise 2

Exercise 3

Exercise 4

Exercise 5

Exercise 6

Exercise 7

Exercise 8

Exercise 9
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