Introduction to the Theory of Formal Languages

Wiebke Petersen

Heinrich-Heine-Universität Düsseldorf Institute of Language and Information Computational Linguistics www.phil-fak.uni-duesseldorf.de/~petersen/

Riga, 2006

Outline

Introduction to Computational Linguistics

Preliminaries

- alphabets and words
- operations on words
- formal languages
- 3

Chomsky hierarchy

- describing formal languages
- formal grammars
- Chomsky-hierarchy

Regular languages

- regular expressions
- right-linear grammars
- finite-state automata
- closure properties and pumping lemma
- 5

Context-free languages

- context-free grammars
- pumping lemma and closure properties
- pushdown automaton

Chomsky hierarchy

alphabets and words

alphabets and words

Definition

- alphabet Σ: nonempty, finite set of symbols
- word: a finite string $x_1 \dots x_n$ of symbols.
- length of a word |w|: number of symbols of a word w (example: |abbaca| = 6)
- empty word ϵ : the word of length 0
- Σ* is the set of all words over Σ
- Σ⁺ is the set of all nonempty words over Σ (Σ⁺ = Σ^{*} \ {ε})

Chomsky hierarchy

alphabets and words

Substrings

Prefix, suffix, infix

Given words $w, v \in \Sigma^*$:

prefix: *w* is a prefix of *v* iff there exists a word $u \in \Sigma^*$ with v = wu.

suffix: *w* is a suffix of *v* iff there exists a word $u \in \Sigma^*$ with v = uw.

infix: *w* is an infix of *v* iff there exist words $u_1, u_2 \in \Sigma^*$ with $v = u_1 w u_2$.

Chomsky hierarchy

operations on words

Concatenation

Definition

The concatenation of two words $w = a_1 a_2 \dots a_n$ and $v = b_1 b_2 \dots b_m$ with $n, m \ge 0$ is

$$w \circ v = a_1 \dots a_n b_1 \dots b_m$$

Sometimes we write uv instead of $u \circ v$.

 $w \circ \epsilon = \epsilon \circ w = w$ neutral element $u \circ (v \circ w) = (u \circ v) \circ w$ associativity (Σ^*, \circ) is a semi-group with neutral element (monoid).

Chomsky hierarchy

operations on words

Exponents and reversals

Exponents

- wⁿ: w concatenated n-times with itself.
- $w^0 = \epsilon$

•
$$w^* = \bigcup_{n>0} w^n$$

• $\epsilon \in w^*$ for any word w

Reversals

- The reversal of a word w is denoted w^R (example: (abcd)^R = dcba.
- A word w with $w = w^R$ is called a palindrome.

```
(madam, mum, otto, anna,...)
```

Chomsky hierarchy

formal languages

Formal language

Definition

A formal language *L* is a set of words over an alphabet Σ , i.e. $L \subseteq \Sigma^*$.

Examples:

- language L_{pal} of the palindromes in English
 L_{pal} = {mum, madam, ...}
- language L_{Mors} of the letters of the latin alphabet encoded in the Morse code: L_{Mors} = {·−, − · · , . . . , − − · }
- the empty set
- the set of words of length 13 over the alphabet {*a*, *b*, *c*}
- English?

Preliminaries ○○○○●○ Chomsky hierarchy

formal languages

Operations on formal languages

Definition

If L ⊆ Σ* and K ⊆ Σ* are two formal languages over an alphabet Σ, then

 $K \cup L, K \cap L, K \setminus L$

are languages over Σ too.

• The concatenation of two formal languages K and L is

$$K \circ L := \{ v \circ w \in \Sigma^* | v \in K, w \in L \}$$

•
$$L^n = \underbrace{L \circ L \circ L \ldots \circ L}_{n \text{-times}}$$

• $L^* := \bigcup_{n \ge 0} L^n$. Note: $\{\epsilon\} \in L^*$ for any language *L*.

Preliminaries ○○○○○● Chomsky hierarchy

formal languages

Operations on formal languages

Example

 $K = \{abb, a\}$ and $L = \{bbb, ab\}$

K ∘ *L* = {*abbbbb*, *abbab*, *abbb*, *aab*} and *L* ∘ *K* = {*bbbabb*, *bbba*, *ababb*, *aba*}

•
$$K \circ \emptyset = \emptyset$$

•
$$K \circ \{\epsilon\} = K$$

• $K^2 = \{abbabb, abba, aabb, aa\}$

describing formal languages

Enumerating all elements of a language

- Peter says that Mary is fallen of the tree.
- Oskar says that Peter says that Mary is fallen of the tree.
- Lisa says that Oskar says that Peter says that Mary is fallen of the tree.

...

The set of strings of a natural language is infinite. The enumeration does not gather generalizations.

Chomsky hierarchy

describing formal languages

Grammars

Grammar

- A formal grammar is a generating device which can generate (and analyze) strings/words.
- Grammars are finite rule systems.
- The set of all strings generated by a grammar is a formal language (= generated language).

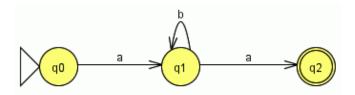
Generates: the cat sleeps

describing formal languages

Automata

Automaton

- An automaton is a recognizing device which accepts strings/words.
- The set of all strings accepted by an automaton is a formal language (=accepted language).



accepts: $L(ab^*a)$

Chomsky hierarchy

describing formal languages

Formal grammar

Definition

A formal grammar is a 4-tupel G = (N, T, S, P) with

- an alphabet of terminals T,
- an alphabet of nonterminals *N* with $N \cap T = \emptyset$,
- a start symbol $S \in N$,

• a finite set of rules/productions

 $\boldsymbol{P} \subseteq \{ \langle \alpha, \beta \rangle \mid \alpha, \beta \in (\boldsymbol{N} \cup \boldsymbol{T})^* \text{ and } \alpha \notin \boldsymbol{T}^* \}.$

Instead of $\langle \alpha, \beta \rangle$ we write also $\alpha \to \beta$.

Chomsky hierarchy

formal grammars

Formal grammar

Vocabulary

Let G = (N, T, S, P) be a grammar and $v, w \in (T \cup N)^*$:

- *v* is directly derived from *w* (or *w* directly generates *v*),
 w → *v* if *w* = *w*₁α*w*₂ and *v* = *w*₁β*w*₂ such that ⟨α, β⟩ ∈ *P*.
- *v* is derived from *w* (or *w* generates *v*), $w \to^* v$ if there exists $w_0, w_1, \ldots, w_k \in (T \cup N)^*$ ($k \ge 0$) such that $w = w_0$, $w_k = v$ and $w_{i-1} \to w_i$ for all $k \ge i \ge 0$.
- $\bullet \ {\rightarrow^*}$ denotes the reflexive transitive closure of \rightarrow
- L(G) = {w ∈ T*|S →* w} is the formal language generated by the grammar G.

formal grammars

Example

 $\textit{G}_{1} = \langle \{\textit{S,NP,VP,N,V,D,N,EN}\}, \{\textit{the, cat, peter, chases}\}, \textit{S}, \textit{P} \rangle$

1	S	\rightarrow	NP VP	VP	\rightarrow	V NP	NP	\rightarrow	D N)
$P = \langle$	NP	\rightarrow	EN	D	\rightarrow	the	Ν	\rightarrow	cat	Y
	EN	\rightarrow	peter	V	\rightarrow	chases				J

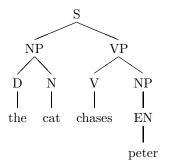
 $L(G_1) = \left\{ \begin{array}{c} \text{the cat chases peter} & \text{peter chases the cat} \\ \text{peter chases peter} & \text{the cat chases the cat} \end{array} \right\}$

"the cat chases peter" can be derived from *S* by:

Chomsky hierarchy

formal grammars

Derivation tree



One derivation determines one derivation tree, but the same derivation tree can result from different derivations. formal grammars

Not all formal languages are derivable from a formal grammar

- The set of all formal languages over an alphabet Σ = {a} is POW(Σ*); hence, the set is uncountably infinite.
- The set of grammars generating formal languages over Σ with finite sets of productions is countably infinite.
- Hence, the set of formal languages generated by a formal grammar is a strict subset of the set of all formal languages.

Chomsky-hierarchy

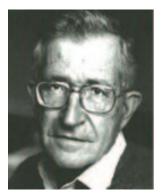
Chomsky-hierarchy

- The Chomsky-hierarchy is a hierarchy over structure conditions on the productions.
- Constraining the structure of the productions results in a restricted set of languages.
- The language classes correspond to conditions on the right- and left-hand sides of the productions.
- The Chomsky-hierarchy reflects a special form of complexity, other criteria are possible and result in different hierarchies.
- Linguists benefit from the rule-focussed definition of the Chomsky-hierarchy.

Chomsky hierarchy

Chomsky-hierarchy

Noam Chomsky



Noam Chomsky (* 7.12.1928, Philadelphia) Noam Chomsky, *Three Models for the Description of Language*, (1956).

Chomsky-hierarchy

Chomsky-hierarchy

A grammar (N, T, S, P) is a

Type 3) regular grammar (REG): iff every production is of the form

 $A \rightarrow \beta B$ or $A \rightarrow \beta$ with $A, B \in N$ and $\beta \in T^*$ (right-linear grammar);

or iff every production is of the form

 $A \rightarrow B\beta$ or $A \rightarrow \beta$ with $A, B \in N$ and $\beta \in T^*$ (left-linear grammar).

Type 2) context-free grammar (CF): iff every production is of the form

 $A \rightarrow \beta$ with $A \in N$ and $\beta \in (N \cup T)^*$.

Chomsky-hierarchy

Chomsky-hierarchy (cont.)

A grammar (N, T, S, P) is a

Type 1) context-sensitive grammar (CS): iff every production is of the form

 $\gamma A \delta \rightarrow \gamma \beta \delta$ with $\gamma, \delta, \beta \in (N \cup T)^*, A \in N$ and $\beta \neq \epsilon$;

or of the form $S \to \epsilon$, in which case S does not occur on any right-hand side of a production.

Type 0) phrase-structure grammar (recursively enumerable grammar) (RE): iff every production is of the form

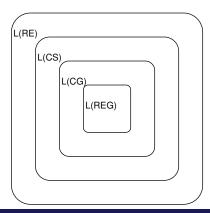
 $\alpha \rightarrow \beta$ with $\alpha \in (N \cup T)^* \setminus T^*$ and $\beta \in (N \cup T)^*$.

Chomsky hierarchy

Chomsky-hierarchy

Main theorem

$\textbf{L(REG)} \subset \textbf{L(CG)} \subset \textbf{L(CS)} \subset \textbf{L(RE)}$



regular expressions

Regular expressions

RE: syntax

The set of **regular expressions** RE_{Σ} over an alphabet $\Sigma = \{a_1, \dots, a_n\}$ is defined by:

- $\Sigma = \{a_1, \ldots, a_n\}$ is defined by:
 - $\underline{\emptyset}$ is a regular expression.
 - ϵ is a regular expression.
 - a_1, \ldots, a_n are regular expressions
 - If a and b are regular expressions over Σ then
 - (*a*+*b*)
 - (a b)
 - (*a**)

are regular expressions too.

(The brackets are frequently omitted w.r.t. the following dominance scheme: \star dominates \bullet dominates +)

Chomsky hierarchy

regular expressions

Regular expressions

RE: semantics

Each regular expression *r* over an alphabet Σ denotes a formal language $L(r) \subseteq \Sigma^*$.

Regular languages are those formal languages which can be expressed by a regular expression.

The denotation function L is defined inductively:

•
$$L(\underline{\emptyset}) = \emptyset$$
, $L(\epsilon) = \{\epsilon\}$, $L(a_i) = \{a_i\}$

•
$$L(a+b) = L(a) \cup L(b)$$

•
$$L(a \bullet b) = L(a) \circ L(b)$$

•
$$L(a^{\star}) = L(a)^{\star}$$

right-linear grammars

Type3-languages

Definition

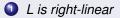
A grammar (N, T, S, P) is **right-linear** iff all productions are of the form:

 $A \rightarrow w$ or $A \rightarrow wB$ with $A, B \in N$ and $w \in T^*$.

A language generated by a right-linear grammar is said to be a right-linear language.

Proposition

If L is a formal language, the following statements are equivalent:



- 2 L is regular
- (L is left-linear)

right-linear grammars

Proof: Each regular language is right-linear

- $\Sigma = \{a_1, \ldots, a_n\}$
 - (1) \emptyset is generated by $(\{S\}, \Sigma, S, \{\}),$
 - 2 { ϵ } is generated by ({S}, Σ , S, { $S \rightarrow \epsilon$ }),
 - **3** $\{a_i\}$ is generated by $(\{S\}, \Sigma, S, \{S \rightarrow a_i\}),$
 - If L_1 , L_2 are regular languages with generating right-linear grammars (N_1, T_1, S_1, P_1) , (N_2, T_2, S_2, P_2) , then $L_1 \cup L_2$ is generated by $(N_1 \uplus N_2, T_1 \cup T_2, S, P_1 \cup_{\uplus} P_2 \cup \{S \to S_1, S \to S_2\})$,
 - S $L_1 \circ L_2$ is generated by $(N_1 ⊎ N_2, T_1 \cup T_2, S_1, P'_1 \cup ⊎ P_2)$ $(P'_1$ is obtained from P_1 if all rules of the form A → w ($w ∈ T^*$) are replaced by $A → wS_2$),
 - **5** L_1^* is generated by $(N_1, \Sigma, S_1, P'_1 \cup \{S_1 \rightarrow \epsilon\})$ (P'_1 is obtained from P_1 if all rules of the form $A \rightarrow w$ ($w \in T^*$) are replaced by $A \rightarrow wS_1$).

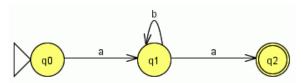
finite-state automata

Deterministic finite-state automaton (DFSA)

Definition

A deterministic finite-state automaton is a tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$ with:

- a finite, non-empty set of states Q
- **2** an alphabet Σ with $Q \cap \Sigma = \emptyset$
- **3** a partial transition function $\delta : \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$
- an initial state $q_0 \in Q$ and
- **3** a set of final states $F \subseteq Q$.



finite-state automata

Language accepted by an automaton

Definition

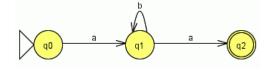
A situation of a finite-state automaton $\langle Q, \Sigma, \delta, q_0, F \rangle$ is a triple (x, q, y) with $x, y \in \Sigma^*$ and $q \in Q$. Situation (x, q, y) produces situation (x', q', y') in one step if there exists an $a \in \Sigma$ such that x' = xa, y = ay' and $\delta(q, a) = q'$, we write $(x, q, y) \vdash (x', q', y')$ $((x, q, y) \vdash^* (x', q', y')$ as usual).

Definition

A word $w \in \Sigma^*$ gets accepted by an automaton $\langle Q, \Sigma, \delta, q_0, F \rangle$ if $(\epsilon, q_0, w) \vdash^* (w, q_n, \epsilon)$ with $q_n \in F$. An automaton accepts a language iff it accepts every word of the language.

Chomsky hierarchy

finite-state automata



accepts *L*(*ab***a*)

finite-state automata

Nondeterministic finite-state automaton NDFSA

Definition

A nondeterministic finite-state automaton is a tuple $\langle Q, \Sigma, \Delta, q_0, F \rangle$ with:

- a finite non-empty set of states Q
- **2** an alphabet Σ with $Q \cap \Sigma = \emptyset$
- **3** a transition relation $\Delta \subseteq Q \times \Sigma \times Q$
- **(9)** an initial state $q_0 \in Q$ and
- **a** set of **final states** $F \subseteq Q$.

Theorem

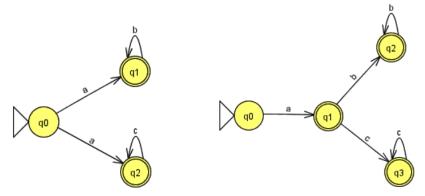
A language L can be accepted by a DFSA iff L can be accepted by a NFSA.

Chomsky hierarchy

finite-state automata

Example DEA / NDEA

The language $L(ab^* + ac^*)$ gets accepted by

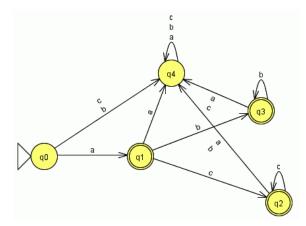


Note: Even automatons with ϵ -transitions accept the same languages like NDEA's.

finite-state automata

Complete deterministic finite-state automata

Complete deterministic finite-state automata have a total transition function:



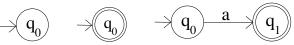
finite-state automata

Finite-state automatons accept regular languages

Theorem (Kleene)

Every language accepted by a DFSA is regular and every regular language is accepted by some DFSA.

proof idea: Each regular language is accepted by a NDFSA:

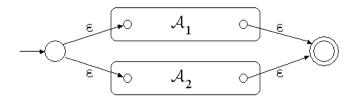


Chomsky hierarchy

finite-state automata

Proof of Kleene's theorem (cont.)

If R_1 and R_2 are two regular expressions such that the languages $L(R_1)$ and $L(R_2)$ are accepted by the automatons A_1 and A_2 respectively, then $L(R_1 + R_2)$ is accepted by:

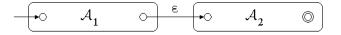


Chomsky hierarchy

finite-state automata

Proof of Kleene's theorem (cont.)

 $L(R_1 \bullet R_2)$ is accepted by:

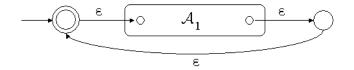


Chomsky hierarchy

finite-state automata

Proof of Kleene's theorem (cont.)

 $L(R_1^*)$ is accepted by:



closure properties and pumping lemma

Closure properties of regular languages

	Туре3	Type2	Type1	Туре0
union	+ 🗸	+	+	+
intersection	+	-	+	+
complement	+	-	+	-
concatenation	+ 🗸	+	+	+
Kleene's star	+ 🗸	+	+	+
intersection with a regular language	+	+	+	+

complement: construct complementary DFSA

intersection: implied by de Morgan

closure properties and pumping lemma

Pumping lemma for regular languages

Lemma (Pumping-Lemma)

If L is an infinite regular language over Σ , then there exists words $u, v, w \in \Sigma^*$ such that $v \neq \epsilon$ and $uv^i w \in L$ for any $i \geq 0$.

proof sketch:

- Any regular language is accepted by a DFSA with a finite number *n* of states.
- Any infinite language contains a word *z* which is longer than *n* (|*z*| ≥ *n*).
- While reading in z, the DFSA passes at least one state q_j twice.

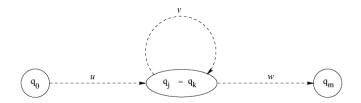
closure properties and pumping lemma

Pumping lemma for regular languages (cont.)

Lemma (Pumping-Lemma)

If L is an infinite regular language over Σ , then there exists words $u, v, w \in \Sigma^*$ such that $v \neq \epsilon$ and $uv^i w \in L$ for any $i \geq 0$.

proof sketch:



Preliminaries

Chomsky hierarchy

closure properties and pumping lemma

$L = \{a^n b^n : n \ge 0\}$ is not regular

- $L = \{a^n b^n : n \ge 0\}$ is infinite.
- Suppose *L* is regular. Then there exists *u*, *v*, *w* ∈ {*a*, *b*}*, *v* ≠ *e* with *uvⁿw* ∈ *L* for any *n* ≥ 0.
- We have to consider 3 cases for v.
 - v consists of a's and b's.
 - v consists only of a's.
 - v consists only of b's.

closure properties and pumping lemma

Exercises

Are the following languages regular?

•
$$L_1 = \{w \in \{a, b\}^* : w \text{ contains an even number of } b's\}.$$

2
$$L_2 = \{ w \in \{a, b\}^* : w \text{ contains as many } b's \text{ as } a's \}.$$

3
$$L_3 = \{ww^R \in \{a, b\}^* : ww^R \text{ is a palindrome over } \{a, b\}^*\}.$$

Regular languages Context-free languages

closure properties and pumping lemma

Intuitive rules for regular languages

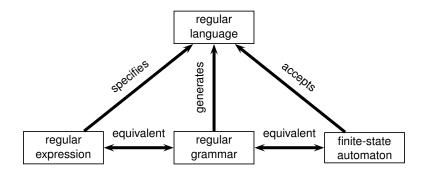
- L is regular if it is possible to check the membership of a word simply by reading it symbol for symbol while using only a finite stack.
- Finite-state automatons are too weak for:
 - counting in ℕ ("same number as");
 - recognizing a pattern of arbitrary length ("palindrome");
 - expressions with brackets of arbitrary depth.

Preliminaries

Chomsky hierarchy

closure properties and pumping lemma

Summary: regular languages



context-free grammars

Context-free language

Definition

A grammar (N, T, S, P) is **context-free** if all production rules are of the form:

 $A \rightarrow \alpha$, with $A \in N$ and $\alpha \in (T \cup N)^*$.

A language generated by a context-free grammar is said to be context-free.

Proposition

The set of context-free languages is a strict superset of the set of regular languages.

Proof: Each regular language is per definition context-free. $L(a^n b^n)$ is context-free but not regular $(S \rightarrow aSb, S \rightarrow \epsilon)$.

context-free grammars

Examples of context-free languages

•
$$L_1 = \{ww^R : w \in \{a, b\}^*\}$$

• $L_2 = \{a^i b^j : i \ge j\}$
• $L_3 = \{w \in \{a, b\}^* : \text{more } a's \text{ than } b's\}$
• $L_4 = \{w \in \{a, b\}^* : \text{number of } a's \text{ equals number of } b's\}$
 $\begin{cases} S \rightarrow aB \ A \rightarrow a \ B \rightarrow b \\ S \rightarrow bA \ A \rightarrow aS \ B \rightarrow bS \\ A \rightarrow bAA \ B \rightarrow aBB \end{cases}$

context-free grammars

Ambiguous grammars and ambiguous languages

Definition

Given a context-free grammar G: A derivation which always replaces the left furthest nonterminal symbol is called **left-derivation**

Definition

A context-free grammar G is **ambiguous** iff there exists a $w \in L(G)$ with more than one left-derivation, $S \rightarrow^* w$.

Definition

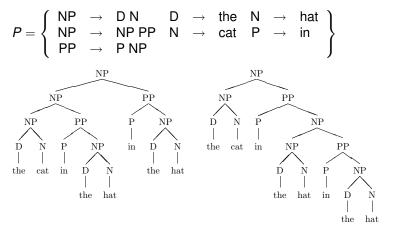
A context-free language L is **ambiguous** iff each context-free grammar G with L(G) = L is ambiguous.

Left-derivations and derivation trees determine each other!

context-free grammars

Example of an ambiguous grammar

G = (N, T, NP, P) with $N = \{D, N, P, NP, PP\}, T = \{$ the, cat, hat, in $\},$



context-free grammars

Chomsky Normal Form

Definition

A grammar is in **Chomsky Normal Form (CNF)** if all production rules are of the form

$$2 A \to BC$$

with $A, B, C \in T$ and $a \in \Sigma$ (and if necessary $S \rightarrow \epsilon$ in which case S may not occur in any right-hand side of a rule).

Proposition

Each context-free language is generated by a grammar in CNF.

pumping lemma and closure properties

Pumping lemma for context-free languages

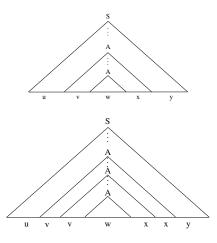
Lemma (pumping lemma)

For each context-free language L there exists a $p \in \mathbb{N}$ such that for any $z \in L$: if |z| > p, then z may be written as z = uvwxy with

- $u, v, w, x, y \in T^*$,
- $|vwx| \leq p$,
- $vx \neq \epsilon$ and
- $uv^i wx^i y \in L$ for any $i \ge 0$.

pumping lemma and closure properties

Pumping lemma: proof sketch



 $|vwx| \le p$, $vx \ne \epsilon$ and $uv^i wx^i y \in L$ for any $i \ge 0$.

pumping lemma and closure properties

Existence of non context-free languages

•
$$L_1 = \{a^n b^n c^n\}$$

• $L_2 = \{a^n b^m c^n d^m\}$
• $L_1 = \{ww : w \in \{a, b\}^*\}$

pumping lemma and closure properties

Closure properties of context-free languages

	Туре3	Type2	Type1	Type0
union	+	+	+	+
intersection	+	-	+	+
complement	+	-	+	-
concatenation	+	+	+	+
Kleene's star	+	+	+	+
intersection with a regular language	+	+	+	+

union: $G = (N_1 \uplus N_2 \cup \{S\}, T_1 \cup T_2, S, P)$ with $P = P_1 \cup_{\uplus} P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

intersection: $L_1 = \{a^n b^n a^k\}, L_2 = \{a^n b^k a^k\}, \text{ but } L_1 \cap L_2 = \{a^n b^n a^n\}$ complement: *de Morgan*

concatenation:
$$G = (N_1 \uplus N_2 \cup \{S\}, T_1 \cup T_2, S, P)$$
 with $P = P_1 \cup_{\uplus} P_2 \cup \{S \rightarrow S_1 S_2\}$

Kleene's star: $G = (N_1 \cup \{S\}, T_1, S, P)$ with $P = P_1 \cup \{S \rightarrow S_1S, S \rightarrow \epsilon\}$

Preliminaries pumping lemma and closure properties

decision problems

Given: grammars $G = (N, \Sigma, S, P), G' = (N', \Sigma, S', P')$, and a word $w \in \Sigma^*$

word problem Is w derivable from G? emptiness problem Does G generate a nonempty language? equivalence problem Do G and G' generate the same language (L(G) = L(G'))?

pumping lemma and closure properties

Results for the decision problems

	Туре3	Type2	Type1	Type0		
word problem	D	D	D	U		
emptiness problem	D	D	U	U		
equivalence problem	D	U	U	U		
D. decidable: U. undecidable						

Formal Language Theory

Chomsky-hierarchy (1956)

Type 3: REG	finite-state automaton	WP: linear
Type 2: CF	pushdown- automaton	WP: cubic
Type 1: CS	linearly restricted automaton	WP: exponential
Type 0: RE	Turing machine	WP: not decid- able

Literature

 Beesley & Karttunen (2003) Finite State Morphology. CSLI.
 Hopcroft, Motwani & Ullman (2001) Introduction to Automata and Language Theory. Addison-Wesley, 2nd edition.

- Partee, ter Meulen & Wall (1990) Mathematical Methods in Linguistics. Kluwer Academic Publishers.
- Sipser (2005) Introduction to the Theory of Computation. Thomson Course Technology, 2nd edition.
- Sudkamp (1996) Languages and Machines: An Introduction to the Theory of Computer Science. Addison Wesley, 2nd edition.