
CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

Introduction to the Theory of Formal
Languages

Wiebke Petersen

Heinrich-Heine-Universität Düsseldorf
Institute of Language and Information

Computational Linguistics
www.phil-fak.uni-duesseldorf.de/~petersen/

Riga, 2006

Formal Language Theory Wiebke Petersen

www.phil-fak.uni-duesseldorf.de/~petersen/


CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

Outline

1 Introduction to Computational Linguistics

2 Preliminaries
alphabets and words
operations on words
formal languages

3 Chomsky hierarchy
describing formal languages
formal grammars
Chomsky-hierarchy

4 Regular languages
regular expressions
right-linear grammars
finite-state automata
closure properties and pumping lemma

5 Context-free languages
context-free grammars
pumping lemma and closure properties
pushdown automaton

Formal Language Theory Wiebke Petersen



CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

alphabets and words

alphabets and words

Definition
alphabet Σ: nonempty, finite set of symbols
word: a finite string x1 . . . xn of symbols.
length of a word |w |: number of symbols of a word w
(example: |abbaca| = 6)
empty word ε: the word of length 0
Σ∗ is the set of all words over Σ

Σ+ is the set of all nonempty words over Σ (Σ+ = Σ∗ \ {ε})

Formal Language Theory Wiebke Petersen
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alphabets and words

Substrings

Prefix, suffix, infix
Given words w , v ∈ Σ∗:

prefix: w is a prefix of v iff there exists a word u ∈ Σ∗ with
v = wu.

suffix: w is a suffix of v iff there exists a word u ∈ Σ∗ with
v = uw .

infix: w is an infix of v iff there exist words u1, u2 ∈ Σ∗

with v = u1wu2.

Formal Language Theory Wiebke Petersen
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operations on words

Concatenation

Definition
The concatenation of two words w = a1a2 . . . an and
v = b1b2 . . . bm with n, m ≥ 0 is

w ◦ v = a1 . . . anb1 . . . bm

Sometimes we write uv instead of u ◦ v .

w ◦ ε = ε ◦ w = w neutral element

u ◦ (v ◦ w) = (u ◦ v) ◦ w associativity

(Σ∗, ◦) is a semi-group with neutral element (monoid).

Formal Language Theory Wiebke Petersen
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operations on words

Exponents and reversals

Exponents
wn: w concatenated n-times with itself.
w0 = ε

w∗ =
⋃

n≥0 wn

ε ∈ w∗ for any word w

Reversals

The reversal of a word w is denoted w R (example:
(abcd)R = dcba.
A word w with w = wR is called a palindrome.

(madam, mum, otto, anna,. . . )

Formal Language Theory Wiebke Petersen
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formal languages

Formal language

Definition
A formal language L is a set of words over an alphabet Σ,
i.e. L ⊆ Σ∗.

Examples:
language Lpal of the palindromes in English
Lpal = {mum, madam, . . . }
language LMors of the letters of the latin alphabet encoded
in the Morse code: LMors = {·−,− · ··, . . . ,−− ··}

the empty set
the set of words of length 13 over the alphabet {a, b, c}
English?

Formal Language Theory Wiebke Petersen
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formal languages

Operations on formal languages

Definition

If L ⊆ Σ∗ and K ⊆ Σ∗ are two formal languages over an alphabet
Σ, then

K ∪ L, K ∩ L, K \ L

are languages over Σ too.

The concatenation of two formal languages K and L is

K ◦ L := {v ◦ w ∈ Σ∗|v ∈ K , w ∈ L}

Ln = L ◦ L ◦ L . . . ◦ L
︸ ︷︷ ︸

n-times

L∗ :=
⋃

n≥0 Ln. Note: {ε} ∈ L∗ for any language L.

Formal Language Theory Wiebke Petersen
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formal languages

Operations on formal languages

Example
K = {abb, a} and L = {bbb, ab}

K ◦ L = {abbbbb, abbab, abbb, aab} and
L ◦ K = {bbbabb, bbba, ababb, aba}
K ◦ ∅ = ∅

K ◦ {ε} = K
K 2 = {abbabb, abba, aabb, aa}

Formal Language Theory Wiebke Petersen
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describing formal languages

Enumerating all elements of a language

Peter says that Mary is fallen of the tree.
Oskar says that Peter says that Mary is fallen of the tree.
Lisa says that Oskar says that Peter says that Mary is
fallen of the tree.
. . .

The set of strings of a natural language is infinite.
The enumeration does not gather generalizations.

Formal Language Theory Wiebke Petersen
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describing formal languages

Grammars

Grammar
A formal grammar is a generating device which can
generate (and analyze) strings/words.
Grammars are finite rule systems.
The set of all strings generated by a grammar is a formal
language (= generated language).

S → NP VP VP → V NP → D N
D → the N → cat V → sleeps

Generates: the cat sleeps

Formal Language Theory Wiebke Petersen
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describing formal languages

Automata

Automaton
An automaton is a recognizing device which accepts
strings/words.
The set of all strings accepted by an automaton is a formal
language (=accepted language).

accepts: L(ab?a)

Formal Language Theory Wiebke Petersen
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describing formal languages

Formal grammar

Definition
A formal grammar is a 4-tupel G = (N, T , S, P) with

an alphabet of terminals T ,
an alphabet of nonterminals N with N ∩ T = ∅,
a start symbol S ∈ N,
a finite set of rules/productions
P ⊆ {〈α, β〉 | α, β ∈ (N ∪ T )∗ and α 6∈ T ∗}.

Instead of 〈α, β〉 we write also α → β.

Formal Language Theory Wiebke Petersen
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formal grammars

Formal grammar

Vocabulary
Let G = (N, T , S, P) be a grammar and v , w ∈ (T ∪ N)∗:

v is directly derived from w (or w directly generates v ),
w → v if w = w1αw2 and v = w1βw2 such that 〈α, β〉 ∈ P.
v is derived from w (or w generates v ), w →∗ v if there
exists w0, w1, . . . wk ∈ (T ∪ N)∗ (k ≥ 0) such that w = w0,
wk = v and wi−1 → wi for all k ≥ i ≥ 0.
→∗ denotes the reflexive transitive closure of →
L(G) = {w ∈ T ∗|S →∗ w} is the formal language
generated by the grammar G.

Formal Language Theory Wiebke Petersen
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formal grammars

Example

G1 = 〈{S,NP,VP,N,V,D,N,EN}, {the, cat, peter, chases}, S, P〉

P =







S → NP VP VP → V NP NP → D N
NP → EN D → the N → cat
EN → peter V → chases







L(G1) =

{
the cat chases peter peter chases the cat
peter chases peter the cat chases the cat

}

“the cat chases peter” can be derived from S by:

S → NP VP → NP V NP → NP V EN
→ NP V peter → NP chases peter → D N chases peter
→ D cat chases peter → the cat chases peter

Formal Language Theory Wiebke Petersen
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formal grammars

Derivation tree

S� � � �
����

NP� ���

D

the

N

cat

VP� ���

V

chases

NP

EN

peter

One derivation determines one derivation tree, but
the same derivation tree can result from different derivations.

Formal Language Theory Wiebke Petersen
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formal grammars

Not all formal languages are derivable from a
formal grammar

The set of all formal languages over an alphabet Σ = {a}
is POW(Σ∗); hence, the set is uncountably infinite.
The set of grammars generating formal languages over Σ
with finite sets of productions is countably infinite.
Hence, the set of formal languages generated by a formal
grammar is a strict subset of the set of all formal
languages.

Formal Language Theory Wiebke Petersen
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Chomsky-hierarchy

Chomsky-hierarchy

The Chomsky-hierarchy is a hierarchy over structure conditions
on the productions.

Constraining the structure of the productions results in a
restricted set of languages.

The language classes correspond to conditions on the right- and
left-hand sides of the productions.

The Chomsky-hierarchy reflects a special form of complexity,
other criteria are possible and result in different hierarchies.

Linguists benefit from the rule-focussed definition of the
Chomsky-hierarchy.

Formal Language Theory Wiebke Petersen
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Chomsky-hierarchy

Noam Chomsky

Noam Chomsky
(∗ 7.12.1928, Philadelphia)

Noam Chomsky, Three Models for the Description of Language, (1956).

Formal Language Theory Wiebke Petersen
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Chomsky-hierarchy

Chomsky-hierarchy

A grammar (N, T , S, P) is a

Type 3) regular grammar (REG): iff every production is of the form

A → βB or A → β with A, B ∈ N and β ∈ T ∗(right-linear grammar);

or iff every production is of the form

A → Bβ or A → β with A, B ∈ N and β ∈ T ∗(left-linear grammar).

Type 2) context-free grammar (CF): iff every production is of the
form

A → β with A ∈ N and β ∈ (N ∪ T )∗.

Formal Language Theory Wiebke Petersen
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Chomsky-hierarchy

Chomsky-hierarchy (cont.)

A grammar (N, T , S, P) is a

Type 1) context-sensitive grammar (CS): iff every production is of
the form

γAδ → γβδ with γ, δ, β ∈ (N ∪ T )∗, A ∈ N and β 6= ε;

or of the form S → ε, in which case S does not occur on any
right-hand side of a production.

Type 0) phrase-structure grammar (recursively enumerable
grammar) (RE): iff every production is of the form

α → β with α ∈ (N ∪ T )∗ \ T ∗ and β ∈ (N ∪ T )∗.

Formal Language Theory Wiebke Petersen
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Chomsky-hierarchy

Main theorem

L(REG) ⊂ L(CG) ⊂ L(CS) ⊂ L(RE)

L(RE)

L(CS)

L(CG)

L(REG)

Formal Language Theory Wiebke Petersen
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regular expressions

Regular expressions

RE: syntax
The set of regular expressions REΣ over an alphabet
Σ = {a1, . . . , an} is defined by:

∅ is a regular expression.
ε is a regular expression.
a1, . . . , an are regular expressions
If a and b are regular expressions over Σ then

(a + b)
(a • b)
(a?)

are regular expressions too.
(The brackets are frequently omitted w.r.t. the following dominance
scheme: ? dominates • dominates +)

Formal Language Theory Wiebke Petersen
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regular expressions

Regular expressions

RE: semantics
Each regular expression r over an alphabet Σ denotes a formal
language L(r) ⊆ Σ∗.
Regular languages are those formal languages which can be
expressed by a regular expression.
The denotation function L is defined inductively:

L(∅) = ∅, L(ε) = {ε}, L(ai) = {ai}

L(a + b) = L(a) ∪ L(b)

L(a • b) = L(a) ◦ L(b)

L(a?) = L(a)∗

Formal Language Theory Wiebke Petersen
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right-linear grammars

Type3-languages

Definition
A grammar (N, T , S, P) is right-linear iff all productions are of the
form:

A → w or A → wB with A, B ∈ N and w ∈ T ∗.

A language generated by a right-linear grammar is said to be a
right-linear language.

Proposition

If L is a formal language, the following statements are equivalent:

1 L is right-linear

2 L is regular

3 (L is left-linear)

Formal Language Theory Wiebke Petersen
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right-linear grammars

Proof: Each regular language is right-linear

Σ = {a1, . . . , an}

1 ∅ is generated by ({S}, Σ, S, {}),

2 {ε} is generated by ({S}, Σ, S, {S → ε}),

3 {ai} is generated by ({S}, Σ, S, {S → ai}),

4 If L1, L2 are regular languages with generating right-linear
grammars (N1, T1, S1, P1), (N2, T2, S2, P2), then L1 ∪ L2 is
generated by (N1 ]N2, T1 ∪T2, S, P1 ∪] P2 ∪{S → S1, S → S2}),

5 L1 ◦ L2 is generated by (N1 ] N2, T1 ∪ T2, S1, P ′
1 ∪] P2) (P ′

1 is
obtained from P1 if all rules of the form A → w (w ∈ T ∗) are
replaced by A → wS2),

6 L∗
1 is generated by (N1, Σ, S1, P ′

1 ∪ {S1 → ε}) (P ′
1 is obtained

from P1 if all rules of the form A → w (w ∈ T ∗) are replaced by
A → wS1).

Formal Language Theory Wiebke Petersen
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finite-state automata

Deterministic finite-state automaton (DFSA)

Definition
A deterministic finite-state automaton is a tuple
〈Q,Σ, δ, q0, F 〉 with:

1 a finite, non-empty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅

3 a partial transition function δ : Q × Σ → Q
4 an initial state q0 ∈ Q and
5 a set of final states F ⊆ Q.

Formal Language Theory Wiebke Petersen
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finite-state automata

Language accepted by an automaton

Definition
A situation of a finite-state automaton 〈Q,Σ, δ, q0, F 〉 is a triple
(x , q, y) with x , y ∈ Σ∗ and q ∈ Q.
Situation (x , q, y) produces situation (x ′, q′, y ′) in one step if
there exists an a ∈ Σ such that x ′ = xa, y = ay ′ and
δ(q, a) = q′, we write (x , q, y) ` (x ′, q′, y ′)
((x , q, y) `∗ (x ′, q′, y ′) as usual).

Definition
A word w ∈ Σ∗ gets accepted by an automaton 〈Q,Σ, δ, q0, F 〉
if (ε, q0, w) `∗ (w , qn, ε) with qn ∈ F.
An automaton accepts a language iff it accepts every word of
the language.

Formal Language Theory Wiebke Petersen
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finite-state automata

Example

accepts L(ab?a)

Formal Language Theory Wiebke Petersen
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finite-state automata

Nondeterministic finite-state automaton NDFSA

Definition
A nondeterministic finite-state automaton is a tuple
〈Q,Σ,∆, q0, F 〉 with:

1 a finite non-empty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅

3 a transition relation ∆ ⊆ Q × Σ × Q
4 an initial state q0 ∈ Q and
5 a set of final states F ⊆ Q.

Theorem
A language L can be accepted by a DFSA iff L can be accepted
by a NFSA.

Formal Language Theory Wiebke Petersen



CL Preliminaries Chomsky hierarchy Regular languages Context-free languages

finite-state automata

Example DEA / NDEA

The language L(ab? + ac?) gets accepted by

Note: Even automatons with ε-transitions accept the same
languages like NDEA’s.

Formal Language Theory Wiebke Petersen
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finite-state automata

Complete deterministic finite-state automata

Complete deterministic finite-state automata have a total
transition function:

Formal Language Theory Wiebke Petersen
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finite-state automata

Finite-state automatons accept regular languages

Theorem (Kleene)
Every language accepted by a DFSA is regular and every
regular language is accepted by some DFSA.

proof idea: Each regular language is accepted by a NDFSA:

0
q 0

q 0
q

1
qa

Formal Language Theory Wiebke Petersen
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finite-state automata

Proof of Kleene’s theorem (cont.)

If R1 and R2 are two regular expressions such that the
languages L(R1) and L(R2) are accepted by the automatons
A1 and A2 respectively, then L(R1 + R2) is accepted by:

Formal Language Theory Wiebke Petersen
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finite-state automata

Proof of Kleene’s theorem (cont.)

L(R1 • R2) is accepted by:

Formal Language Theory Wiebke Petersen
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finite-state automata

Proof of Kleene’s theorem (cont.)

L(R∗
1) is accepted by:

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

Closure properties of regular languages

Type3 Type2 Type1 Type0
union + X + + +
intersection + - + +
complement + - + -
concatenation + X + + +
Kleene’s star + X + + +
intersection with a regular language + + + +

complement: construct complementary DFSA

intersection: implied by de Morgan

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

Pumping lemma for regular languages

Lemma (Pumping-Lemma)
If L is an infinite regular language over Σ, then there exists
words u, v , w ∈ Σ∗ such that v 6= ε and uv iw ∈ L for any i ≥ 0.

proof sketch:
Any regular language is accepted by a DFSA with a finite
number n of states.
Any infinite language contains a word z which is longer
than n (|z| ≥ n).
While reading in z, the DFSA passes at least one state qj
twice.

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

Pumping lemma for regular languages (cont.)

Lemma (Pumping-Lemma)
If L is an infinite regular language over Σ, then there exists
words u, v , w ∈ Σ∗ such that v 6= ε and uv iw ∈ L for any i ≥ 0.

proof sketch:

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

L = {anbn
: n ≥ 0} is not regular

L = {anbn : n ≥ 0} is infinite.
Suppose L is regular. Then there exists u, v , w ∈ {a, b}∗,
v 6= ε with uvnw ∈ L for any n ≥ 0.
We have to consider 3 cases for v .

1 v consists of a’s and b’s.
2 v consists only of a’s.
3 v consists only of b’s.

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

Exercises

Are the following languages regular?
1 L1 = {w ∈ {a, b}∗ : w contains an even number of b′s}.
2 L2 = {w ∈ {a, b}∗ : w contains as many b′s as a′s}.
3 L3 = {wwR ∈ {a, b}∗ : wwR is a palindrome over {a, b}∗}.

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

Intuitive rules for regular languages

L is regular if it is possible to check the membership of a
word simply by reading it symbol for symbol while using
only a finite stack.
Finite-state automatons are too weak for:

counting in N (“same number as”);
recognizing a pattern of arbitrary length (“palindrome”);
expressions with brackets of arbitrary depth.

Formal Language Theory Wiebke Petersen
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closure properties and pumping lemma

Summary: regular languages

regular
expression

regular
grammar

finite-state
automaton

regular
language

sp
ecifi

es

ge
ne

ra
te

s accepts

equivalent equivalent

Formal Language Theory Wiebke Petersen
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context-free grammars

Context-free language

Definition
A grammar (N, T , S, P) is context-free if all production rules
are of the form:

A → α, with A ∈ N and α ∈ (T ∪ N)∗.

A language generated by a context-free grammar is said to be
context-free.

Proposition
The set of context-free languages is a strict superset of the set
of regular languages.

Proof: Each regular language is per definition context-free.
L(anbn) is context-free but not regular (S → aSb, S → ε).

Formal Language Theory Wiebke Petersen
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context-free grammars

Examples of context-free languages

L1 = {wwR : w ∈ {a, b}∗}
L2 = {aibj : i ≥ j}
L3 = {w ∈ {a, b}∗ : more a′s than b′s}
L4 = {w ∈ {a, b}∗ : number of a′s equals number of b′s}






S → aB A → a B → b
S → bA A → aS B → bS

A → bAA B → aBB







Formal Language Theory Wiebke Petersen
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context-free grammars

Ambiguous grammars and ambiguous languages

Definition
Given a context-free grammar G: A derivation which always
replaces the left furthest nonterminal symbol is called
left-derivation

Definition
A context-free grammar G is ambiguous iff there exists a
w ∈ L(G) with more than one left-derivation, S →∗ w.

Definition
A context-free language L is ambiguous iff each context-free
grammar G with L(G) = L is ambiguous.

Left-derivations and derivation trees determine each other!
Formal Language Theory Wiebke Petersen
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context-free grammars

Example of an ambiguous grammar

G = (N, T , NP, P) with N = {D, N, P, NP, PP}, T = {the, cat, hat, in},

P =







NP → D N D → the N → hat
NP → NP PP N → cat P → in
PP → P NP
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context-free grammars

Chomsky Normal Form

Definition
A grammar is in Chomsky Normal Form (CNF) if all
production rules are of the form

1 A → a
2 A → BC

with A, B, C ∈ T and a ∈ Σ (and if necessary S → ε in
which case S may not occur in any right-hand side of a
rule).

Proposition
Each context-free language is generated by a grammar in CNF.

Formal Language Theory Wiebke Petersen
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pumping lemma and closure properties

Pumping lemma for context-free languages

Lemma (pumping lemma)
For each context-free language L there exists a p ∈ N such that
for any z ∈ L: if |z| > p, then z may be written as z = uvwxy
with

u, v , w , x , y ∈ T ∗,
|vwx | ≤ p,
vx 6= ε and
uv iwx iy ∈ L for any i ≥ 0.

Formal Language Theory Wiebke Petersen
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pumping lemma and closure properties

Pumping lemma: proof sketch

S

A

A

xv ywu

.

..

.

..

S

A

A

xv ywu

.

..

.

..

A.
..

v x

|vwx | ≤ p, vx 6= ε and uv iwx iy ∈ L for any i ≥ 0.
Formal Language Theory Wiebke Petersen
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pumping lemma and closure properties

Existence of non context-free languages

L1 = {anbncn}

L2 = {anbmcndm}

L1 = {ww : w ∈ {a, b}∗}

Formal Language Theory Wiebke Petersen
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pumping lemma and closure properties

Closure properties of context-free languages
Type3 Type2 Type1 Type0

union + + + +
intersection + - + +
complement + - + -
concatenation + + + +
Kleene’s star + + + +
intersection with a regular language + + + +

union: G = (N1 ] N2 ∪ {S}, T1 ∪ T2, S, P) with
P = P1 ∪] P2 ∪ {S → S1, S → S2}

intersection: L1 = {anbnak}, L2 = {anbk ak}, but L1 ∩ L2 = {anbnan}

complement: de Morgan

concatenation: G = (N1 ] N2 ∪ {S}, T1 ∪ T2, S, P) with
P = P1 ∪] P2 ∪ {S → S1S2}

Kleene’s star: G = (N1 ∪ {S}, T1, S, P) with
P = P1 ∪ {S → S1S, S → ε}

Formal Language Theory Wiebke Petersen
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pumping lemma and closure properties

decision problems

Given: grammars G = (N,Σ, S, P), G′ = (N ′,Σ, S′, P ′), and a
word w ∈ Σ∗

word problem Is w derivable from G ?
emptiness problem Does G generate a nonempty language?
equivalence problem Do G and G′ generate the same

language (L(G) = L(G′))?

Formal Language Theory Wiebke Petersen
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pumping lemma and closure properties

Results for the decision problems

Type3 Type2 Type1 Type0
word problem D D D U
emptiness problem D D U U
equivalence problem D U U U

D: decidable; U: undecidable

Formal Language Theory Wiebke Petersen
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Chomsky-hierarchy (1956)

Type 3: REG
finite-state
automaton WP: linear

Type 2: CF
pushdown-
automaton WP: cubic

Type 1: CS

linearly
restricted
automaton

WP:
exponential

Type 0: RE
Turing
machine

WP: not decid-
able

Formal Language Theory Wiebke Petersen
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