Reminder: Basic Set Theory

- set: a collection of entities
- a set is determined by the entities, which belong to it
- element $(a \in A)$: an entity belongs to a set
- finite sets can be defined as a list of elements, e.g. $\{a, b, c, d, e\}$
- there is exactly one set with no elements: empty set, \emptyset
- subset $(A \subseteq B)$: all elements of A are also elements of B
- borderline cases: $A \subseteq A, \emptyset \subseteq A$
- two sets A and B are equal iff $A \subseteq B$ and $B \subseteq A$
- power set $\left(\mathcal{P O \mathcal { W }}(A)\right.$ or $\left.2^{A}\right)$: the set of all subsets of A
- two sets A and B are disjoint iff $A \cap B=\emptyset$

Reminder: Basic Set Theory

- union $(A \cup B)$: set of entities that are in A or in B

- intersection $(A \cap B)$: set of entities that are both in A and B

- difference $(A \backslash B)$: set of entities that are in A but not in B

Reminder: Basic Set Theory

- given the basic set U and set $A \subseteq U$ we call $U \backslash A$ the complement of A and write \bar{A}

- the laws of de Morgan:
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- $\overline{A \cup B}=\bar{A} \cap \bar{B}$

Reminder: Basic Set Theory

- an n-tuple is a list with $n \geq 1$ elements where the order of the elements is fixed and each element can occur any number of times
- a 2-tuple is also called an ordered pair
- the Cartesian product of n sets $A_{1} \times \ldots \times A_{n}$ is the set of all n -tuples of which the $i^{\text {th }}$ element is from the set A_{i};
$A_{1} \times \ldots \times A_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in M_{i}\right.$ for $\left.i=1, \ldots, n\right\}$
- e.g. $A=\{a, b\}$ and $B=\{c, d\}$ then

$$
A \times B=\{(a, c),(a, d),(b, c),(b, d)\}
$$

$A \times A \times \ldots \times A$ is also written as A^{n} where A occurs exactly n-times

- a subset of Cartesian products of n sets $R \subseteq A_{1} \times \ldots \times A_{n}$ is called an n-place relation.
- a binary relation is a set of orderrd pairs
- when a and b are in the relation R, we write

$$
(a, b) \in R \text { of } a R b \text { or } R(a, b) \text { or } R a b
$$

Reminder: Basic Set Theory

- a relation R is transitive if for all $a, b, c \in A$: if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) i n R$

- a relation R is reflexive if for all $a \in A:(a, a) \in R$ holds

- a relation R is symmetric if for all $a, b \in A$: if $(a, b) \in R$ then $(b, a) \in R$

Reminder: Basic Set Theory

- a relation $R \subseteq A \times A$ on A if R is reflexive, symmetric and transitive
- Let R be an equivalence relation on A
- the equivalence class of an element $a \in A$ is the set of all elements in A which are equivalent to $a:[a]_{R}=\{b \in A \mid(a, b) \in R\}$
- the set $A / R=\left\{[a]_{R} \mid a \in A\right\}$ of all equivalence classes of elements of A with respect to R is called the quotient of A with respect to R
- Let R be an equivalence relation on A. Then it holds that
- two equivalence class of R are either disjoint or identical:
- for all $a, b \in A$ we have either $[a]_{R} \cap[b]_{R}=\emptyset$ or $[A]_{R}=[b]_{R}$
- the equivalence classes of R cover the whole of $A: \bigcap A / R=A$

Reminder: Basic Set Theory

- a relation $R \subseteq A \times B$ is a function if every element of A is related to exactly one element from B
- functions must satisfy existence and uniqueness
- existence: for all $a \in A$ there is a $b \in B$ such that $(a, b) \in R$
- uniqueness: if $(a, b) \in R$ and $(a, c) \in R$ then $b=c$
- a relation R such that it satisfies uniqueness (but does not satisfy existence) is called a partial function

Reminder: Basic Set Theory

- a function f is injektive if two distinct elements of its domain are never related to the same element of its range: for all $a, b \in A$: iff $f(a)=f(b)$ then $a=b$

- a function f is surjective if all for $a \in A$ there is a $b \in B$ such that $f(a)=b$

- a function f is bijective if f is injective and surjective

Reminder: Basic Set Theory

- a subset $N \subseteq A$ can be described using its characteristic function
- the characteristic function of a subset $N \subseteq A$ is the function $\chi: A \rightarrow\{0,1\}$ for which it holds that $\chi(x)=1$ if and only if $x \in N$
- the characteristic function of $N \subseteq A$ is frequently written as χ_{N}
- it holds that

$$
\chi_{N}: A \rightarrow\{0,1\} ; \quad \chi_{N}(x)= \begin{cases}1 & \text { if } x \in N \\ 0 & \text { otherwise }\end{cases}
$$

