Decision Problems Introduction to Formal Language Theory — day 5

Wiebke Petersen, Kata Balogh

Heinrich-Heine-Universität

NASSLLI 2014

A decision problem is a problem of the form "Given (x_1, \ldots, x_n) , can we decide whether *y* holds?"

- A tuple (x_1, \ldots, x_n) is called an instance of the problem.
- A tuple (*x*₁,..., *x_n*) for which *y* holds is called a positive instance of the problem.

- Problems have the form: "Can we decide for every x whether it has property P?"
- Languages as problems: "Can we decide for every word whether it belongs to L?"
- Problems as languages: "The language of all x which have property P."

examples:

- Can we decide for any pair (*M*, *w*) consisting of a Turing machine *M* and a word *w* whether *M* halts on *w*?
- Can we decide for any pair (G₁, G₂) of two context-free grammars whether L(G₁) = L(G₂)?
- Can we decide for any context-free grammar G whether $L(G) = \emptyset$?

problem instances versus problems

- Single instances are not problems! Whether 'S → a' generates a word is simple to answer, but not the general problem ranging over all possible instances.
- Problems can be represented by sets with positive instances as elements.

decidabiltiy

A language $L \subseteq \Sigma^*$ is decidable if its *characteristic function* $\chi_L : \Sigma^* \to \{0, 1\}$ is computable:

$$\chi_L(w) = \begin{cases} 1, & w \in L \\ 0, & w \notin L \end{cases}$$

A language $L \subseteq \Sigma^*$ is semi-decidable if $\chi'_L : \Sigma^* \to \{0, 1\}$ is computable:

$$\chi_L(w) = \begin{cases} 1, & w \in L \\ undefined, & w \notin L \end{cases}$$

- *L* is decidable if and only if *L* and \overline{L} are semi-decidable.
- A language *L* is recursively enumerable (RE) if and only if *L* is semi-decidable.

Given: grammars $G = (N, \Sigma, S, R)$, $G' = (N', \Sigma', S', R')$, and a word $w \in \Sigma$: word problem: Is *w* derivable from *G*, i.e. $w \in L(G)$? emptiness problem: Does *G* generate a nonempty language, i.e. $L(G) \neq \emptyset$? equivalence problem: Do *G* and *G'* generate the same language, i.e. L(G) = L(G')?

	ТуреЗ	Type2	Type1	Туре0
word problem	D	D	D	U
emptiness problem	D	D	U	U
equivalence problem	D	U	U	U

D: decidable; U: undecidable

- word problem for Type1: use the property that the derivation string does not shrink in any derivation step.
- emptyness problem for Type2: bottom up argument over the non-terminals from which terminal strings can be derived.
- equivalence problem for Type3: check via minimal automaton.

An universal Turing machine U is a TM that simulates arbitrary other TMs. It takes as input

- the description of a Turing machine M and
- an input string w

and accepts w if and only if M accepts w.

Construction idea: Use a 2-tape Turing machine

- Ist tape: encoding of M
- 2nd tape: w

The universal machine reads the code of M on tape 1 to see what to do with the word on tape 2 (tape 1 is not changed).

Gödel numbering

A Gödel numbering is a function $G: M \to \mathbb{N}$ with

- G is injective
- G(M) is decidable
- $G: M \to \mathbb{N}$ and $G^{-1}: G(M) \to M$ are computable

Gödel numbering of TMs (using binary code)

• Given $M = (Q, \Sigma, \Gamma, \delta, q_1, \Box, F)$, we assume that

$$Q = \{q_1, q_2, ...\}$$

$$\Gamma = \{X_1, X_2, ...\}$$

$$\Box = X_1$$

$$F = \{q_2\}$$

$$D_1 = R, D_2 = L$$

• Code each transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ as $0^i 10^j 10^k 10^l 10^m$

- Note that this code never has two successive 1's.
- Code *M* by concatenating all transition codes C_i with '11'-strings as separators: $G(M) = 11C_111C_211C_3...11C_n.$
- $M \mapsto G(M)$ is a Gödel numbering of Turing machines.

Note: $\{G(M)|M \text{ is a TM}\}$ and $\{M|M \text{ is a TM}\}$ are countable sets.

Halting problem

$H = \{G(M) \# w | M(w) \text{ halts}\}$

- Given a Turing machine *M* and an input word *w*.
- Does M halt if it runs on input w?

	w ₁	<i>w</i> ₂	W3	<i>w</i> 4	<i>W</i> 5	w ₆	W 7	W ₈	Wg
G_1	0	1	1	0	1	0	0	1	1
G_2	0	1	0	1	1	1	0	1	0
G_3	1	0	1	0	1	0	1	0	1
G_4	0	1	1	1	0	1	0	1	1
G_5	0	1	0	1	0	1	1	0	1
G_6	1	1	0	1	0	1	1	0	0
G_7	0	1	0	1	0	1	0	1	0
G_8	1	1	1	0	1	0	1	0	1
G_9	1	1	0	1	0	1	1	1	<mark>1</mark>
÷	:	÷	÷	÷	÷	÷	÷	÷	÷

The halting problem is undecidable.

Proof by a diagonal argument:

- Assume that the halting problem is decidable.
- ⇒ there is a TM *H* which computes for every TM *M* and every word *w*, whether *M* halts on *w*.
 - Let w_i be the i-th word and G_i the TM with the i-th Gödel number.
- From H construct a second TM H' which takes a word w_i as input and acts as follows:
 - ► Whenever *H* outputs 1 for (*G_i*, *w_i*), *H'* goes into an endless loop.
 - Whenever H outputs 0 for (G_i, w_i), H' halts.
- \Rightarrow H' is a TM of which the Gödel number is not in the matrix.
- \Rightarrow the assumption is wrong; the halting problem is undecidable.

Peters	en & E	Balogh ((HHU)

Given two languages $L \subseteq \Sigma^*$ and $K \subseteq \Gamma^*$. *L* is reducible to *K* (in symbols $L \leq K$) if there exists a total function $f : \Sigma^* \to \Gamma^*$, such that

• f is computable and

•
$$w \in L \Leftrightarrow f(x) \in K$$
 for all $w \in \Sigma^*$

Lemma

- If $L \leq K$ and K is decidable, then L is decidable.
- If *L* ≤ *K* and *K* is semi-decidable, then *L* is semi-decidable.
- If *L* ≤ *K* and *L* is undecidable, then *K* is undecidable.

$H_0 = \{G(M) | M(\epsilon) \text{ halts} \}$

- Given a Turing machine M.
- Does *M* halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

Proof by reduction $H \leq H_0$:

- Let G(M) # w be an instance of H.
- Define a Turing machine M_w which starts with the empty tape, writes w onto the tape, and simulates M on w.
- $f: G(M) \# w \mapsto G(M_w)$ is a computable function and
- $G(M) \# w \in H \Leftrightarrow G(M_w) \in H_0$
- \Rightarrow H_0 is undecidable.

If *M* is a Turing machine let f_M be the function computed by *M*. A functional property of *M*, i.e. a property of f_M is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

Let *P* be a non-trivial property of Turing machines.

- Given a Turing machine M.
- Does *M* has property *P*?

Any non-trivial property of a Turing machine is undecidable.

examples of non-trivial properties

- The computed function is constant.
- The Turing machine computes the successor function.
- The Turing machine computes a total function.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As *P* is non-trivial there is a TM M_P with $G(M_P) \in P$.
- Construct a new TM M'. For any input w
 - M' first computes M(e) and if it halts
 - M' computes M_P(w)

If $G(M) \notin H_0$: $M(\epsilon)$ does not halt and M' computes M_{\perp} , thus $G(M') \notin P$ If $G(M) \in H_0$: $M(\epsilon)$ does halt and M computes M_P , thus $G(M') \in P$.

- As $f : G(M) \mapsto G(M')$ is computable and $G(M) \in H_0 \Leftrightarrow G(M') \in P$, we proved $H_0 \leq P$.
- As H₀ is undecidable, P is undecidable as well.

Given: A finite set of word pairs $(x_1, y_1), \dots, (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$. Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ such that $x_{i_1}x_{i_2}\dots x_{i_n} = y_{i_1}y_{i_2}\dots y_{i_n}$?

PCP: complex example

Petersen & Balogh (HHU

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $(x_1, y_1), \dots, (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$. Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ with $i_1 = 1$ such that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$

MP	CP														PC	P			
$\frac{\Sigma}{1} = \frac{1}{2}$	= {(dex	D, 1	} <i>x_i</i> 10 10 11	0	<i>y</i> ; 1 0 1	0 1 11	_						_1	$\stackrel{r}{ ightarrow}$	Σ ir 1 2 3 4	= {0, ndex	1} ∪ {#,\$} <u>x;</u> #1#0#0# 1#1# &	} <u>yi</u> #1#0 #0#1 #1#1#1) #&	
1	0	0	1	0	1	1													_
1	0	0	1	1	1	1										$\pmb{p}\in$	MPCP ⇔	$f(p) \in PCP$	
#	1	#	0	#	0	#	1	#	0	#	1	#	1	#	&	MP	$CP \leq PCP$	2	
#	1	#	0	#	0	#	1	#	1	#	1	#	1	#	&				

Petersen & Balogh (HHU

Decision Problems

The MPCP is undecidable, proof by $H \leq MPCP$

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \rightarrow MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (*M*, *w*) is an instance of *H*, i.e. *G*(*M*)#*w* ∈ *H*, iff there is a sequence of configurations c₀, c₁, c₂...c_f with c₀ = q₀w, c_i ⇒ c_{i+1}, and c_f has a final state.
- The idea is to code this into a MPCP problem:

Be careful, this only shows the main idea. We are oversimplifying here as neither the set of $c_i \Rightarrow c_{i+1}$ nor the set of c_f 's needs to be finite. For a formal proof see Hopcroft & Ullman 1979.

Proposition

PCP restricted to words over the alphabet $\{0,1\}$ is undecidable.

Given a PCP instance *p* over an alphabet {*a*₁,..., *a_k*} construct a PCP instance *p'* over {0, 1} by replacing every *a_i* by 01^{*i*}.

•
$$p \in PCP \Leftrightarrow p' \in PCP$$

 $\Rightarrow \textit{PCP} \leq \textit{PCP}_{\{0,1\}}$

Undecidable grammar problems

Proposition

Given two context-free grammars G_1 , G_2 , the following problems are undecidable:

- Is $L(G_1) \cap L(G_2) = \emptyset$? ($GP_{\cap,\emptyset}$)
- Is $L(G_1) \cap L(G_2)$ infinite? ($GP_{\cap,\infty}$)
- Is $L(G_1) \cap L(G_2)$ context-free? ($GP_{\cap, CF}$)
- Is $L(G_1) \subseteq L(G_2)$? (GP_{\subseteq})
- *Is* $L(G_1) = L(G_2)$? (*GP*₌)

Proposition

Given a context-free grammars G, the following problems are undecidable:

- Is G ambiguous?
- Is L(G) infinite?
- Is $L(G_1) \cap L(G_2)$ context-free?
- Is L(G) regular?

Encode PCPs as grammars

Given a PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ over $\{0, 1\}$, construct two grammars

 $S \rightarrow A\$B$ $A \rightarrow i_1Ax_1|\dots|i_kAx_k$ $G_1: A \rightarrow i_1x_1|\dots|i_kx_k$ $B \rightarrow y_1^BBi_1|\dots|y_k^BBi_k$ $B \rightarrow y_1^Ri_1|\dots|y_k^Ri_k$

 $G_2: \begin{array}{ccc} S & \rightarrow & i_1 S i_1 | \dots | i_k S i_k | T \\ T & \rightarrow & 0 T 0 | 1 T 1 | \$ \end{array}$

Grammar G₁ generates words of the form

 $i_{n_1} i_{n_2} \cdots i_{n_k} x_{n_k} \cdots x_{n_2} x_{n_1} \$ y_{m_1}^{R_1} y_{m_2}^{R_2} \cdots y_{m_j}^{R_j} i_{m_j} \cdots i_{m_2} i_{m_1}$ Grammar G_2 generates words of the form $i_{n_1} i_{n_2} \cdots i_{n_k} 1 1 0 \cdots 1 \$ 1 \cdots 0 1 1 i_{n_k} \cdots i_{n_2} i_{n_1}$

 $L(G_1) \cap L(G_2)$ consists of words of the form:

 $i_{n_1} \dots i_{n_k} v \$ v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$

to prove:

Given two context-free grammars G_1 , G_2 , the following problems are undecidable:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap, CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v \$ v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.
- \Rightarrow *PCP* \leq *GP*_{\cap,\emptyset}, the problem whether *L*(*G*₁) \cap *L*(*G*₂) = \emptyset is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
- \Rightarrow *PCP* \leq *GP*_{\cap,∞} the problem whether *L*(*G*₁) \cap *L*(*G*₂) is infinite is undecidable.
- If $L(G_1) \cap L(G_2) \neq \emptyset$ then $L(G_1) \cap L(G_2)$ is not context-free (Pumping-Lemma).
- \Rightarrow *PCP* \leq *GP*_{\cap,CF}, the problem whether *L*(*G*₁) \cap *L*(*G*₂) is context-free is undecidable.

Proposition

Deterministic context-free grammars are closed under complement. There is a computable function f such that for each context-free grammar G, f(G) is a context-free grammar with $\overline{L(G)} = L(f(G))$

For a proof see Hopcroft & Ullman 1979.

to prove:

Given two context-free grammars G, G', the following problems are undecidable:

- Is $L(G) \subseteq L(G')$? (GP_{\subset})
- Is L(G) = L(G')? (GP_=)
- Note that the grammars G₁ and G₂ are deterministic.
- $L(G_1) \cap L(G_2) = \emptyset$ if and only if $L(G_1) \subseteq \overline{L(G_2)}$
- $\Rightarrow GP_{\cap,\emptyset} \leq GP_{\subset}$, the problem whether $L(G) \subseteq L(G')$ is undecidable.
- $L(G) \subseteq L(G')$ if and only if $L(G) \cup L(G') = L(G')$.
- \Rightarrow the problem whether L(G) = L(G') is undecidable.

Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:

- Is G ambiguous? (GP_{amb})
- Is L(G) context-free? (GP_{CF})
- Is L(G) regular? (GPreg)
- Let G_1 and G_2 be as before. Let G_3 be the grammar which generates $L(G_1) \cup L(G_2)$.
 - The instance of the PCP problem has a solution iff there exists a word w ∈ L(G₃) which has two derivation trees (one from G₁ and one from G₂).
 - \Rightarrow *PCP* \leq *GP*_{amb}, the problem whether a context-free grammar is ambiguous is undecidable.
- Remember, G_1 and G_2 are deterministic and $f(G_1)$, $f(G_2)$ generate the complement languages. Let G_4 be the grammar which generates $L(G_4) = L(f(G_1)) \cup L(f(G_2)) = \overline{L(G_1)} \cup \overline{L(G_2)} = \overline{L(G_1) \cap L(G_2)}$
 - ▶ The instance of the PCP problem has a solution iff $L(G_1) \cap L(G_2) = \overline{L(G_4)}$ is not context-free.
 - ⇒ $GP_{\cap,CF} \leq GP_{CF}$ The problem whether the complement of a context-free language is context-free is undecidable.
- L(G₁) ∩ L(G₂) = Ø iff L(G₄) = Σ*. Remember: For regular languages it is easy to check whether L = Σ*.
 - $\Rightarrow GP_{\cap,\emptyset} \leq GP_{reg}$ The problem whether a context-free grammar generates a regular language is undecidable.