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Decision problem

A decision problem is a problem of the form “Given (x1, . . . , xn), can we decide
whether y holds?”

A tuple (x1, . . . , xn) is called an instance of the problem.
A tuple (x1, . . . , xn) for which y holds is called a positive instance of the
problem.
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Languages and problems

Problems have the form: “Can we decide for every x whether it has
property P?”
Languages as problems: “Can we decide for every word whether it
belongs to L?”
Problems as languages: “The language of all x which have property P.”

examples:

Can we decide for any pair (M,w) consisting of a Turing machine M and
a word w whether M halts on w?
Can we decide for any pair (G1,G2) of two context-free grammars
whether L(G1) = L(G2)?
Can we decide for any context-free grammar G whether L(G) = ∅?
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Languages and problems

problem instances versus problems

Single instances are not problems! Whether ‘S → a’ generates a word is
simple to answer, but not the general problem ranging over all possible
instances.
Problems can be represented by sets with positive instances as
elements.
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decidabiltiy

A language L ⊆ Σ∗ is decidable if its characteristic function χL : Σ∗ → {0, 1} is computable:

χL(w) =

{
1, w ∈ L
0, w 6∈ L

A language L ⊆ Σ∗ is semi-decidable if χ′L : Σ∗ → {0, 1} is computable:

χL(w) =

{
1, w ∈ L
undefined , w 6∈ L

decider

w

“yes”

“no”
semi-decider

w

“yes”

L is decidable if and only if L and L are semi-decidable.

A language L is recursively enumerable (RE) if and only if L is semi-decidable.
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Decision problems for formal languages

Given: grammars G = (N,Σ,S,R), G′ = (N ′,Σ′,S′,R′), and a word w ∈ Σ:

word problem: Is w derivable from G, i.e. w ∈ L(G)?
emptiness problem: Does G generate a nonempty language, i.e. L(G) 6= ∅?
equivalence problem: Do G and G′ generate the same language, i.e.

L(G) = L(G′)?
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Decision problems for formal languages

Type3 Type2 Type1 Type0
word problem D D D U
emptiness problem D D U U
equivalence problem D U U U

D: decidable; U: undecidable

word problem for Type1: use the property that the derivation string does
not shrink in any derivation step.
emptyness problem for Type2: bottom up argument over the
non-terminals from which terminal strings can be derived.
equivalence problem for Type3: check via minimal automaton.
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Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It
takes as input

the description of a Turing machine M and
an input string w

and accepts w if and only if M accepts w .

Construction idea: Use a 2-tape Turing machine
1st tape: encoding of M
2nd tape: w

The universal machine reads the code of M on tape 1 to see what to do with
the word on tape 2 (tape 1 is not changed).
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Gödel numbering

A Gödel numbering is a function G : M → N with

G is injective

G(M) is decidable

G : M → N and G−1 : G(M)→ M are computable

Gödel numbering of TMs (using binary code)

Given M = (Q,Σ, Γ, δ, q1,2,F ), we assume that
I Q = {q1, q2, . . .}
I Γ = {X1,X2, . . .}
I 2 = X1
I F = {q2}
I D1 = R, D2 = L

Code each transition δ(qi ,Xj ) = (qk ,Xl ,Dm) as 0i 10j 10k 10l 10m

Note that this code never has two successive 1’s.

Code M by concatenating all transition codes Ci with ‘11’-strings as separators:
G(M) = 11C111C211C3 . . . 11Cn.

M 7→ G(M) is a Gödel numbering of Turing machines.

Note: {G(M)|M is a TM} and {M|M is a TM} are countable sets.
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Halting problem

H = {G(M)#w |M(w) halts}
Given a Turing machine M and an input word w .

Does M halt if it runs on input w?

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .
G1 0 1 1 0 1 0 0 1 1 . . .
G2 0 1 0 1 1 1 0 1 0 . . .
G3 1 0 1 0 1 0 1 0 1 . . .
G4 0 1 1 1 0 1 0 1 1 . . .
G5 0 1 0 1 0 1 1 0 1 . . .
G6 1 1 0 1 0 1 1 0 0 . . .
G7 0 1 0 1 0 1 0 1 0 . . .
G8 1 1 1 0 1 0 1 0 1 . . .
G9 1 1 0 1 0 1 1 1 1 . . .
...

...
...

...
...

...
...

...
...

...

The halting problem is undecidable.
Proof by a diagonal argument:

Assume that the halting problem is decidable.

⇒ there is a TM H which computes for every TM M and
every word w , whether M halts on w .
Let wi be the i-th word and Gi the TM with the i-th Gödel
number.

From H construct a second TM H′ which takes a word
wi as input and acts as follows:

I Whenever H outputs 1 for (Gi ,wi ), H′ goes into an
endless loop.

I Whenever H outputs 0 for (Gi ,wi ), H′ halts.

⇒ H′ is a TM of which the Gödel number is not in the
matrix.

⇒ the assumption is wrong; the halting problem is
undecidable.
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Reduction

Given two languages L ⊆ Σ∗ and K ⊆ Γ∗. L is
reducible to K (in symbols L ≤ K ) if there exists a total
function f : Σ∗ → Γ∗, such that

f is computable and
w ∈ L⇔ f (x) ∈ K for all w ∈ Σ∗.

Lemma
If L ≤ K and K is decidable, then L is decidable.
If L ≤ K and K is semi-decidable, then L is
semi-decidable.
If L ≤ K and L is undecidable, then K is
undecidable.

decider
for K

f (w) ∈ K ?

w ∈ L?

“yes” “no”

reduction
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Halting problem on the empty tape

H0 = {G(M)|M(ε) halts}

Given a Turing machine M.
Does M halt if it runs on input ε?

The halting problem on the empty tape is undecidable.

Proof by reduction H ≤ H0:
Let G(M)#w be an instance of H.
Define a Turing machine Mw which starts with the empty tape, writes w
onto the tape, and simulates M on w .
f : G(M)#w 7→ G(Mw ) is a computable function and
G(M)#w ∈ H ⇔ G(Mw ) ∈ H0

⇒ H0 is undecidable.
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Theorem of Rice

If M is a Turing machine let fM be the function computed by M. A functional
property of M, i.e. a property of fM is non-trivial if there is at least one Turing
machine which has the property and one which has it not.

Theorem of Rice
Let P be a non-trivial property of Turing machines.

Given a Turing machine M.
Does M has property P?

Any non-trivial property of a Turing machine is undecidable.

examples of non-trivial properties

The computed function is constant.
The Turing machine computes the successor function.
The Turing machine computes a total function.
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Proof of Rice’s theorem

Given a non-trivial functional property. Proof by reduction H0 ≤ P:

Construct a TM M⊥ which never halts.

Assume M⊥ does not have property P (argument for
G(M⊥) ∈ P is analogous).

As P is non-trivial there is a TM MP with G(MP) ∈ P.

Construct a new TM M′. For any input w

I M ′ first computes M(ε) and if it halts
I M ′ computes MP(w)

If G(M) 6∈ H0: M(ε) does not halt and M′ computes M⊥,
thus G(M′) 6∈ P

If G(M) ∈ H0: M(ε) does halt and M computes MP , thus
G(M′) ∈ P.

As f : G(M) 7→ G(M′) is computable and
G(M) ∈ H0 ⇔ G(M′) ∈ P, we proved H0 ≤ P.

As H0 is undecidable, P is undecidable as well.

M’

M

ε

halt MP

input

output
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Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, y1), . . . (xk , yk ), with xi , yi ∈ Σ+.
Question: Is there a sequence of indices i1, i2, . . . , in ∈ {1,2, . . . , k} such

that xi1xi2 . . . xin = yi1yi2 . . . yin ?

example with solution
index xi yi
1 01000 01
2 0 000
3 01 1

0 1 0 0 0

0 1

0

0 0 0

0

0 0 0

0 1

1

solution: 1223

example without solution

index xi yi
1 0 01
2 100 001

0

0 1

1 0 0

0 0 1

1 0 0

0 0 1

1 0 0

0 0 1

1 0 0

0 0 1

no solution
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PCP: complex example

index xi yi
1 001 0
2 01 011
3 01 101
4 10 001

shortes solution: 66 indices long

0 1

0 1 1

1 0

0 0 1

0 1

1 0 1

1 0

0 0 1

1 0

0 0 1

0 1

0 1 1

0 0 1

0

0 1

0 1 1

1 0

0 0 1

0 1

1 0 1

1 0

0 0 1

0 1

1 0 1

1 0

0 0 1

1

0

0 0 1

0 1

1 0 1

1 0

0 0 1

1 0

0 0 1

0 1

0 1 1

0 0 1

0

1 0

0 0 1

1 0

0 0 1

0 1

0 1 1

0 0 1

0

0 1

1 0 1

1 0

0 0 1

0 0 1

0

0 0 1

0

0 1

1 0 1

1 0

0 0 1

1 0

0 0 1

1 0

0 0 1 0

0 1

1 1

0 0 1

0

0 1

0 1 1

0 0 1

0

0 0 1

0

0 0 1

0

0

1

1 0 1

1 0

0 0 1

0 1

1 0 1

1 0

0 0 1

0 0 1

0

0 1

0 1 1

0 0 1

0 0 0

1

1

0

1

1 0

0 0 1

0 1

0 1 1

0 0 1

0

1 0

0 0 1

0 0

1

0

0 0 1

0

0 1

1 0 1

1 0

0 0 1

0 0 1

0

0 0 1

0

0 1

1 0 1

0 0 1

0

0 0 1

0 1 0

0 1

1

0 0 1

0

0

1

0 1 1

0 0 1

0

1 0

0 0 1

0 0 1

0

0 0 1

0

0 1

1 0 1
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Modified Post’s Correspondence Problem (MPCP)

Given: A finite set of word pairs (x1, y1), . . . (xk , yk ), with xi , yi ∈ Σ+.
Question: Is there a sequence of indices i1, i2, . . . , in ∈ {1,2, . . . , k} with

i1 = 1 such that xi1xi2 . . . xin = yi1yi2 . . . yin

MPCP

Σ = {0,1}
index xi yi

1 100 10
2 10 01
3 11 111

f→

PCP

Σ = {0,1} ∪ {#, $}}
index xi yi

1 #1#0#0# #1#0
2 1#0# #0#1
3 1#1# #1#1#1)
4 & #&

1 0 0

1 0

# 1 # 0 # 0 #
# 1 # 0

1 0

0 1

1 # 0 #
# 0 # 1

1 1

1 1 1

1 # 1 #
# 1 # 1 # 1

&
# &

p ∈ MPCP ⇔ f (p) ∈ PCP

MPCP ≤ PCP
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The MPCP is undecidable, proof by H ≤ MPCP

To prove H ≤ MPCP we need a computable reduction function
f : H → MPCP such that G(M) ∈ H ⇔ f (M) ∈ MPCP.
A machine-word pair (M,w) is an instance of H, i.e. G(M)#w ∈ H, iff
there is a sequence of configurations c0, c1, c2 . . . cf with c0 = q0w ,
ci ⇒ ci+1, and cf has a final state.
The idea is to code this into a MPCP problem:

index xi yi

1 # # c0
2 ci# #ci+1
...

...
...

n cf # #
...

...
...

#

# c0

c0 #

# c1

c1 #

# c2

c2 #

# c3

c3 #

# c4

c4 #

# c5

c5 #

# ce

ce #

#

Be careful, this only shows the main idea. We are oversimplifying here as
neither the set of ci ⇒ ci+1 nor the set of cf ’s needs to be finite.
For a formal proof see Hopcroft & Ullman 1979.
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PCP restricted to {0,1}

Proposition

PCP restricted to words over the alphabet {0,1} is undecidable.

Given a PCP instance p over an alphabet {a1, . . .ak} construct a PCP
instance p′ over {0,1} by replacing every ai by 01i .
p ∈ PCP ⇔ p′ ∈ PCP

⇒ PCP ≤ PCP{0,1}
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Undecidable grammar problems

Proposition

Given two context-free grammars G1, G2, the following problems are
undecidable:

Is L(G1) ∩ L(G2) = ∅? (GP∩,∅)
Is L(G1) ∩ L(G2) infinite? (GP∩,∞)
Is L(G1) ∩ L(G2) context-free? (GP∩,CF )
Is L(G1) ⊆ L(G2)? (GP⊆)
Is L(G1) = L(G2)? (GP=)

Proposition

Given a context-free grammars G, the following problems are undecidable:
Is G ambiguous?
Is L(G) infinite?
Is L(G1) ∩ L(G2) context-free?
Is L(G) regular?
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Encode PCPs as grammars

Given a PCP instance {(x1, y1), (x2, y2), . . . , (xk , yk )} over {0, 1}, construct two grammars

G1:

S → A$B
A → i1A x1| . . . |ik A xk
A → i1x1| . . . |ik xk
B → yR

1 B i1| . . . |yR
k B ik

B → yR
1 i1| . . . |yR

k ik

G2: S → i1S i1| . . . |ik S ik |T
T → 0T 0|1T1|$

Grammar G1 generates words of the form

in1 in2
. . . ink

xnk . . . xn2 xn1 $ yR
m1

yR
m2

. . . yR
mj

imj
. . . im2 im1

Grammar G2 generates words of the form
in1 in2

. . . ink 1 1 0 . . . 1 $ 1 . . . 0 1 1 ink
. . . in2 in1

L(G1) ∩ L(G2) consists of words of the form:

in1 . . . ink v$vR ink . . . in1 with v = xn1 . . . xnk and vR = yR
nk
. . . yR

n1
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Undecidable grammar problems (proofs)

to prove:
Given two context-free grammars G1, G2, the following problems are undecidable:

Is L(G1) ∩ L(G2) = ∅? (GP∩,∅)

Is L(G1) ∩ L(G2) infinite? (GP∩,∞)

Is L(G1) ∩ L(G2) context-free? (GP∩,CF )

Recall, L(G1) ∩ L(G2) consists of words of the form: in1 . . . ink v$vR ink . . . in1 with
v = xn1 . . . xnk and vR = yR

nk
. . . yR

n1

Hence, the PCP instance {(x1, y1), (x2, y2), . . . , (xk , yk )} has a solution if and only if
L(G1) ∩ L(G2) 6= ∅.

⇒ PCP ≤ GP∩,∅, the problem whether L(G1) ∩ L(G2) = ∅ is undecidable.

If a PCP instance has one solution it has infinitely many solutions.

⇒ PCP ≤ GP∩,∞ the problem whether L(G1) ∩ L(G2) is infinite is undecidable.

If L(G1) ∩ L(G2) 6= ∅ then L(G1) ∩ L(G2) is not context-free (Pumping-Lemma).

⇒ PCP ≤ GP∩,CF , the problem whether L(G1) ∩ L(G2) is context-free is undecidable.
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Undecidable grammar problems (proofs)

Proposition
Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar G, f (G) is a
context-free grammar with L(G) = L(f (G))

For a proof see Hopcroft & Ullman 1979.

to prove:
Given two context-free grammars G, G′, the following problems are undecidable:

Is L(G) ⊆ L(G′)? (GP⊆)

Is L(G) = L(G′)? (GP=)

Note that the grammars G1 and G2 are deterministic.

L(G1) ∩ L(G2) = ∅ if and only if L(G1) ⊆ L(G2)

⇒ GP∩,∅ ≤ GP⊆, the problem whether L(G) ⊆ L(G′) is undecidable.

L(G) ⊆ L(G′) if and only if L(G) ∪ L(G′) = L(G′).

⇒ the problem whether L(G) = L(G′) is undecidable.
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Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:

Is G ambiguous? (GPamb)

Is L(G) context-free? (GPCF )

Is L(G) regular? (GPreg )

Let G1 and G2 be as before. Let G3 be the grammar which generates L(G1) ∪ L(G2).
I The instance of the PCP problem has a solution iff there exists a word w ∈ L(G3) which has

two derivation trees (one from G1 and one from G2).
⇒ PCP ≤ GPamb , the problem whether a context-free grammar is ambiguous is undecidable.

Remember, G1 and G2 are deterministic and f (G1), f (G2) generate the complement
languages. Let G4 be the grammar which generates
L(G4) = L(f (G1)) ∪ L(f (G2)) = L(G1) ∪ L(G2) = L(G1) ∩ L(G2)

I The instance of the PCP problem has a solution iff L(G1) ∩ L(G2) = L(G4) is not
context-free.

⇒ GP∩,CF ≤ GP
CF

The problem whether the complement of a context-free language is
context-free is undecidable.

L(G1) ∩ L(G2) = ∅ iff L(G4) = Σ∗. Remember: For regular languages it is easy to check
whether L = Σ∗.
⇒ GP∩,∅ ≤ GPreg The problem whether a context-free grammar generates a regular language

is undecidable.
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