Decision Problems

Introduction to Formal Language Theory — day 5

Wiebke Petersen, Kata Balogh

Heinrich-Heine-Universität

NASSLLI 2014

Decision problem

A decision problem is a problem of the form "Given (x_1, \ldots, x_n) , can we decide whether y holds?"

- A tuple (x_1, \ldots, x_n) is called an instance of the problem.
- A tuple (x_1, \ldots, x_n) for which y holds is called a positive instance of the problem.

Languages and problems

- Problems have the form: "Can we decide for every x whether it has property P?"
- Languages as problems: "Can we decide for every word whether it belongs to L?"
- Problems as languages: "The language of all x which have property P."

Languages and problems

- Problems have the form: "Can we decide for every x whether it has property P?"
- Languages as problems: "Can we decide for every word whether it belongs to L?"
- Problems as languages: "The language of all x which have property P."

examples:

- Can we decide for any pair (M, w) consisting of a Turing machine M and a word w whether M halts on w?
- Can we decide for any pair (G_1, G_2) of two context-free grammars whether $L(G_1) = L(G_2)$?
- Can we decide for any context-free grammar G whether $L(G) = \emptyset$?

Languages and problems

problem instances versus problems

- Single instances are not problems! Whether 'S → a' generates a word is simple to answer, but not the general problem ranging over all possible instances.
- Problems can be represented by sets with positive instances as elements.

4/24

decidabiltiy

A language $L \subseteq \Sigma^*$ is decidable if its *characteristic function* $\chi_L : \Sigma^* \to \{0,1\}$ is computable:

$$\chi_L(w) = \begin{cases} 1, & w \in L \\ 0, & w \notin L \end{cases}$$

A language $L\subseteq \Sigma^*$ is semi-decidable if $\chi'_L:\Sigma^*\to\{0,1\}$ is computable:

$$\chi_L(w) = \begin{cases} 1, & w \in L \\ undefined, & w \notin L \end{cases}$$

decidabiltiy

A language $L \subseteq \Sigma^*$ is decidable if its *characteristic function* $\chi_L : \Sigma^* \to \{0,1\}$ is computable:

$$\chi_L(w) = \begin{cases} 1, & w \in L \\ 0, & w \notin L \end{cases}$$

A language $L \subseteq \Sigma^*$ is semi-decidable if $\chi'_L : \Sigma^* \to \{0,1\}$ is computable:

$$\chi_L(w) = \begin{cases} 1, & w \in L \\ undefined, & w \notin L \end{cases}$$

- L is decidable if and only if L and \overline{L} are semi-decidable.
- A language L is recursively enumerable (RE) if and only if L is semi-decidable.

5/24

Decision problems for formal languages

Given: grammars $G = (N, \Sigma, S, R)$, $G' = (N', \Sigma', S', R')$, and a word $w \in \Sigma$: word problem: Is w derivable from G, i.e. $w \in L(G)$? emptiness problem: Does G generate a nonempty language, i.e. $L(G) \neq \emptyset$? equivalence problem: Do G and G' generate the same language, i.e. L(G) = L(G')?

Decision problems for formal languages

	Type3	Type2	Type1	Type0
word problem	D	D	D	U
emptiness problem	D	D	U	U
equivalence problem	D	U	U	U

D: decidable; U: undecidable

Decision problems for formal languages

	Type3	Type2	Type1	Type0
word problem	D	D	D	U
emptiness problem	D	D	U	U
equivalence problem	D	U	U	U

D: decidable; U: undecidable

- word problem for Type1: use the property that the derivation string does not shrink in any derivation step.
- emptyness problem for Type2: bottom up argument over the non-terminals from which terminal strings can be derived.
- equivalence problem for Type3: check via minimal automaton.

Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It takes as input

- the description of a Turing machine M and
- an input string w

and accepts w if and only if M accepts w.

Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It takes as input

- the description of a Turing machine M and
- an input string w

and accepts w if and only if M accepts w.

Construction idea: Use a 2-tape Turing machine

- 1st tape: encoding of M
- 2nd tape: w

The universal machine reads the code of M on tape 1 to see what to do with the word on tape 2 (tape 1 is not changed).

Gödel numbering

A Gödel numbering is a function $G: M \to \mathbb{N}$ with

- G is injective
- G(M) is decidable
- ullet $G:M o\mathbb{N}$ and $G^{-1}:G(M) o M$ are computable

Gödel numbering

A Gödel numbering is a function $G: M \to \mathbb{N}$ with

- G is injective
- G(M) is decidable
- $G: M \to \mathbb{N}$ and $G^{-1}: G(M) \to M$ are computable

Gödel numbering of TMs (using binary code)

- Given $M = (Q, \Sigma, \Gamma, \delta, q_1, \square, F)$, we assume that
 - $Q = \{q_1, q_2, \ldots\}$
 - $\Gamma = \{X_1, X_2, \ldots\}$

 - $F = \{q_2\}$
 - $D_1 = R, D_2 = L$
- Code each transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ as $0^i 10^j 10^k 10^l 10^m$
- Note that this code never has two successive 1's.
- Code M by concatenating all transition codes C_i with '11'-strings as separators: $G(M) = 11C_111C_211C_3...11C_n$.
- $M \mapsto G(M)$ is a Gödel numbering of Turing machines.

Note: $\{G(M)|M \text{ is a TM}\}$ and $\{M|M \text{ is a TM}\}$ are countable sets.

$$H = \{G(M) \# w | M(w) \text{ halts}\}$$

- Given a Turing machine *M* and an input word *w*.
- Does M halt if it runs on input w?

$$H = \{G(M) \# w | M(w) \text{ halts}\}$$

- Given a Turing machine *M* and an input word *w*.
- Does M halt if it runs on input w?

The halting problem is undecidable. Proof by a diagonal argument:

Assume that the halting problem is decidable.

	W ₁	W ₂	<i>w</i> ₃	<i>W</i> ₄	W ₅	<i>w</i> ₆	w ₇	w 8	W ₉
G_1	0	1	1	0	1	0	0	1	1
G_2	0	1	0	1	1	1	0	1	0
G_3	1	0	1	0	1	0	1	0	1
G_4	0	1	1	1	0	1	0	1	1
G_5	0	1	0	1	0	1	1	0	1
G_6	1	1	0	1	0	1	1	0	0
G_7	0	1	0	1	0	1	0	1	0
G_8	1	1	1	0	1	0	1	0	1
G_9	1	1	0	1	0	1	1	1	1
:	:	:	:	:	:	:	:	:	:

$H = \{G(M) \# w | M(w) \text{ halts}\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w?

The halting problem is undecidable.

Proof by a diagonal argument:

- Assume that the halting problem is decidable.
- ⇒ there is a TM H which computes for every TM M and every word w, whether M halts on w. Let w_i be the i-th word and G_i the TM with the i-th Gödel number.

	W_1	W_2	Wз	W_4	W_5	<i>W</i> ₆	W_7	<i>W</i> ₈	₩g	
G_1	0	1	1	0	1	0	0	1	1	
G_2	0	1	0	1	1	1	0	1	0	
G_3	1	0	1	0	1	0	1	0	1	
G_4	0	1	1	1	0	1	0	1	1	
G_5	0	1	0	1	0	1	1	0	1	
G_6	1	1	0	1	0	1	1	0	0	
G_7	0	1	0	1	0	1	0	1	0	
G_8	1	1	1	0	1	0	1	0	1	
G_9	1	1	0	1	0	1	1	1	1	
:	:	:	:	:	:	:	:	:	:	

$H = \{G(M) \# w | M(w) \text{ halts}\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w?

The halting problem is undecidable.

Proof by a diagonal argument:

number.

⇒ there is a TM H which computes for every TM M and every word w, whether M halts on w. Let w_i be the i-th word and G_i the TM with the i-th Gödel

Assume that the halting problem is decidable.

- From H construct a second TM H' which takes a word w_i as input and acts as follows:
 - Whenever H outputs 1 for (G_i, w_i), H' goes into an endless loop.
 - ▶ Whenever H outputs 0 for (G_i, w_i) , H' halts.

	w_1	W_2	w_3	W_4	W_5	w_6	W_7	<i>w</i> ₈	₩g	,
G_1	0	1	1	0	1	0	0	1	1	
G_2	0	1	0	1	1	1	0	1	0	
G_3	1	0	1	0	1	0	1	0	1	
G_4	0	1	1	1	0	1	0	1	1	
G_5	0	1	0	1	0	1	1	0	1	
G_6	1	1	0	1	0	1	1	0	0	
G_7	0	1	0	1	0	1	0	1	0	
G_8	1	1	1	0	1	0	1	0	1	
G_9	1	1	0	1	0	1	1	1	1	
:	:	:	:	:	:	:	:	:	:	

$H = \{G(M) \# w | M(w) \text{ halts}\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w?

The halting problem is undecidable.

Proof by a diagonal argument:

- ◆ Assume that the halting problem is decidable.
 ⇒ there is a TM H which computes for every TM M and
 - every word w, whether M halts on w. Let w_i be the i-th word and G_i the TM with the i-th Gödel number.
- From H construct a second TM H' which takes a word w_i as input and acts as follows:
 - Whenever H outputs 1 for (G_i, w_i), H' goes into an endless loop.
 - ▶ Whenever H outputs 0 for (G_i, w_i) , H' halts.
- ⇒ H' is a TM of which the Gödel number is not in the matrix.

$H = \{G(M) \# w | M(w) \text{ halts}\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w?

The halting problem is undecidable.

Proof by a diagonal argument:

- Assume that the halting problem is decidable.
 there is a TM H which computes for every TM M and
 - every word w, whether M halts on w. Let w_i be the i-th word and G_i the TM with the i-th Gödel number.
 - From H construct a second TM H' which takes a word w_i as input and acts as follows:
 - Whenever H outputs 1 for (G_i, w_i), H' goes into an endless loop.
 - ▶ Whenever H outputs 0 for (G_i, w_i) , H' halts.
- ⇒ H' is a TM of which the Gödel number is not in the matrix.
- the assumption is wrong; the halting problem is undecidable.

	w_1	W_2	W_3	W_4	W_5	W_6	W_7	W ₈	W ₉
G_1	0	1	1	0	1	0	0	1	1
G_2	0	1	0	1	1	1	0	1	0
G_3	1	0	1	0	1	0	1	0	1
G_4	0	1	1	1	0	1	0	1	1
G_5	0	1	0	1	0	1	1	0	1
G_6	1	1	0	1	0	1	1	0	0
G_7	0	1	0	1	0	1	0	1	0
G_8	1	1	1	0	1	0	1	0	1
G_9	1	1	0	1	0	1	1	1	<mark>1</mark>
:	:	:	:	:	:	:	:	:	:

Reduction

Given two languages $L \subseteq \Sigma^*$ and $K \subseteq \Gamma^*$. L is reducible to K (in symbols $L \le K$) if there exists a total function $f : \Sigma^* \to \Gamma^*$, such that

- f is computable and
- $w \in L \Leftrightarrow f(x) \in K$ for all $w \in \Sigma^*$.

Reduction

Given two languages $L \subseteq \Sigma^*$ and $K \subseteq \Gamma^*$. L is reducible to K (in symbols $L \le K$) if there exists a total function $f : \Sigma^* \to \Gamma^*$, such that

- f is computable and
- $w \in L \Leftrightarrow f(x) \in K$ for all $w \in \Sigma^*$.

Lemma

- If $L \le K$ and K is decidable, then L is decidable.
- If $L \le K$ and K is semi-decidable, then L is semi-decidable.
- If L ≤ K and L is undecidable, then K is undecidable.

$H_0 = \{G(M)|M(\epsilon) \text{ halts}\}$

- Given a Turing machine *M*.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

$H_0 = \{G(M)|M(\epsilon) \text{ halts}\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

Proof by reduction $H \leq H_0$:

• Let G(M) # w be an instance of H.

$H_0 = \{G(M)|M(\epsilon) \text{ halts}\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

Proof by reduction $H \leq H_0$:

- Let G(M)#w be an instance of H.
- Define a Turing machine M_w which starts with the empty tape, writes w onto the tape, and simulates M on w.

12/24

$H_0 = \{G(M)|M(\epsilon) \text{ halts}\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

Proof by reduction $H \leq H_0$:

- Let G(M) # w be an instance of H.
- Define a Turing machine M_w which starts with the empty tape, writes w onto the tape, and simulates M on w.
- $f: G(M)\#w \mapsto G(M_w)$ is a computable function and
- $G(M)\#w \in H \Leftrightarrow G(M_w) \in H_0$

$H_0 = \{G(M)|M(\epsilon) \text{ halts}\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

Proof by reduction $H \leq H_0$:

- Let G(M) # w be an instance of H.
- Define a Turing machine M_w which starts with the empty tape, writes w onto the tape, and simulates M on w.
- $f: G(M)\#w \mapsto G(M_w)$ is a computable function and
- $G(M)\#w \in H \Leftrightarrow G(M_w) \in H_0$
- $\Rightarrow H_0$ is undecidable.

Theorem of Rice

If M is a Turing machine let f_M be the function computed by M. A functional property of M, i.e. a property of f_M is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

If M is a Turing machine let f_M be the function computed by M. A functional property of M, i.e. a property of f_M is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

Let *P* be a non-trivial property of Turing machines.

- Given a Turing machine M.
- Does M has property P?

Any non-trivial property of a Turing machine is undecidable.

13 / 24

Theorem of Rice

If M is a Turing machine let f_M be the function computed by M. A functional property of M, i.e. a property of f_M is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

Let *P* be a non-trivial property of Turing machines.

- Given a Turing machine M.
- Does M has property P?

Any non-trivial property of a Turing machine is undecidable.

examples of non-trivial properties

- The computed function is constant.
- The Turing machine computes the successor function.
- The Turing machine computes a total function.

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M₁ which never halts.
- Assume M_⊥ does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_⊥ which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As P is non-trivial there is a TM M_P with $G(M_P) \in P$.

NASSLLI 2014

14/24

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As P is non-trivial there is a TM M_P with $G(M_P) \in P$.
- Construct a new TM M'. For any input w
 - M' first computes $M(\epsilon)$ and if it halts
 - M' computes $M_P(w)$

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As P is non-trivial there is a TM M_P with $G(M_P) \in P$.
- Construct a new TM M'. For any input w
 - M' first computes $M(\epsilon)$ and if it halts
 - ightharpoonup M' computes $M_P(w)$

If $G(M) \not\in H_0$: $M(\epsilon)$ does not halt and M' computes M_{\perp} , thus $G(M') \not\in P$

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As P is non-trivial there is a TM M_P with $G(M_P) \in P$.
- Construct a new TM M'. For any input w
 - M' first computes $M(\epsilon)$ and if it halts
 - ightharpoonup M' computes $M_P(w)$
 - If $G(M) \not\in H_0$: $M(\epsilon)$ does not halt and M' computes M_{\perp} , thus $G(M') \not\in P$
 - If $G(M) \in H_0$: $M(\epsilon)$ does halt and M computes M_P , thus $G(M') \in P$.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As P is non-trivial there is a TM M_P with $G(M_P) \in P$.
- Construct a new TM M'. For any input w
 - M' first computes $M(\epsilon)$ and if it halts
 - ightharpoonup M' computes $M_P(w)$
 - If $G(M) \notin H_0$: $M(\epsilon)$ does not halt and M' computes M_{\perp} , thus $G(M') \notin P$ If $G(M) \in H_0$: $M(\epsilon)$ does halt and M computes M_P , thus
 - $G(M') \in P$.
- As $f: G(M) \mapsto G(M')$ is computable and $G(M) \in H_0 \Leftrightarrow G(M') \in P$, we proved $H_0 \leq P$.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_0 \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G(M_{\perp}) \in P$ is analogous).
- As P is non-trivial there is a TM M_P with $G(M_P) \in P$.
- Construct a new TM M'. For any input w
 - M' first computes $M(\epsilon)$ and if it halts
 - ▶ M' computes $M_P(w)$
 - If $G(M) \notin H_0$: $M(\epsilon)$ does not halt and M' computes M_{\perp} , thus $G(M') \notin P$
 - If $G(M) \in H_0$: $M(\epsilon)$ does halt and M computes M_P , thus $G(M') \in P$.
- As $f: G(M) \mapsto G(M')$ is computable and $G(M) \in H_0 \Leftrightarrow G(M') \in P$, we proved $H_0 \leq P$.
- As H_0 is undecidable, P is undecidable as well.

Given: A finite set of word pairs $(x_1, y_1), \dots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ such that $x_{i_1} x_{i_2} \ldots x_{i_n} = y_{i_1} y_{i_2} \ldots y_{i_n}$?

example with solution

index	X_i	Уi	01000
1	01000	01	0 1 1 0 0 0
2	0	000	
3	01	1	0 1
solution:	1223		

Given: A finite set of word pairs $(x_1, y_1), \dots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ such that $x_{i_1} x_{i_2} \ldots x_{i_n} = y_{i_1} y_{i_2} \ldots y_{i_n}$?

example with solution

	index	X_i	Уi	_	4	_	_	0	_
Ì	1	01000	01	U	1	U	U	U	U
	2	0	000		_	_	_	_	1
	3	01	1	U		U	U	0	

solution: 1223

Given: A finite set of word pairs $(x_1, y_1), \dots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ such that $x_{i_1} x_{i_2} \ldots x_{i_n} = y_{i_1} y_{i_2} \ldots y_{i_n}$?

example with solution

index	X_i	y i	0	1	Λ	Λ	_	^	^
1	01000	01	U	1	U	U	U	U	U
2	0	000	0	4	^	_	_	_	
3	01	1	U	ı	U	U	U	U	U
colution	. 1000								

Given: A finite set of word pairs $(x_1, y_1), \dots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ such that $x_{i_1} x_{i_2} \ldots x_{i_n} = y_{i_1} y_{i_2} \ldots y_{i_n}$?

example with solution

solution: 1223

index	x_i	Уi	0 1 0 0 0 0 0 0	_ 1
1	01000	01		'
2	0	000	0 1 0 0 0 0 0 0	_
3	01	1	0 1 0 0 0 0 0 0 0	1

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ such

that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$?

example with solution

index	x_i	Уi	Λ	4	_	_	_	_	^	0	4
1	01000	01	U	'	U	U	U	U	U	U	'
2	0	000		_	_	_	_	_	_	_	_
3	01	1	0	1	U	U	U	U	U	U	1
solution:	1223										

example without solution

index	Xi	y _i		0	1	0	0	
1	0	01		0	4	^	0	4
2	100	001		U	'	U	U	1

no solution

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ such

that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$?

example with solution

index	X_i	Уi	Λ	4	_	_	_	Λ	Λ	0	4
1	01000	01	U	ı	U	U	U	U	U	U	'
2	0	000		_	_	_	_	^	^	0	4
3	01	1	U		U	U	U	U	U	U	١
solution:	1223										

example without solution

index	Xi	Уi	0	1	0	0	1	0	0
1	0	01	0	_	_	_	_	_	_
2	100	001	U	ı	U	U	ı	U	U

no solution

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ such

that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$?

example with solution

index	x_i	Уi	_	4	_	0	_	_	Λ	Λ	1
1	01000	01	U	1	U	U	U	U	U	U	'
2	0	000	_		_	_	-	-	_	_	
3	01	1	0	1	0	0	0	0	0	0	1
solution:	1223										

example without solution

	index	Xi	y i
ı	1	0	01
	2	100	001
	na aaluti	on	

0	1	0	0	1	0	0	1	0	0	
0	1	0	0	1	0	0	1	0	0	1

no solution

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ such

that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$?

example with solution

index	x_i	Уi	Λ	4	_	_	_	_	^	0	1
1	01000	01	U	1	U	U	U	U	U	U	'
2	0	000		4	_	_	_	_	_	0	4
3	01	1	U		U	U	U	U	U	U	
solution:	1223										

example without solution

index	Xi	y i
1	0	01
2	100	001
no coluti	on	

0	1	0	0	1	0	0	1	0	0	1	0	0	
0	1	0	0	1	0	0	1	0	0	1	0	0	1

Given: A finite set of word pairs $(x_1, y_1), \dots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ such

that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$?

example with solution

index	x_i	Уi
1	01000	01
2	0	000
3	01	1
solution:	1223	

example without solution

index	x_i	Уi
1	0	01
2	100	001
no soluti	on	

index	x_i	Уi	shortes solution: 66 indices long
1	001	0	
2	01	011	
3	01	101	
4	10	001	

index	x_i	y i	shortes solution: 66 indices long
1	001	0	
2	01	011	
3	01	101	
4	10	001	
_			

	index	x_i	y i	shortes solution: 66 indices long
	1	001	0	
	2	01	011	
	3	01	101	
	4	10	001	
0 1 1 0	0 1			

				in	de	Κ	X	i	y i	shortes solution: 66 indices long
				1			0	01	0	
				2			0	1	011	
				3			0	1	101	
				4			1	0	001	
n	1	1	n	n	1	1	n]		

				ind	dex	(X			Уi	shortes solution: 66 indices long
				1			0	01		0	
				2			0	1		011	
				3			0	1		101	
				4			1	0		001	
0	1	1	0	0	1	1	0	1	0		
1 ° 1				-			-		_		

	index	x_i	y i	shortes solution: 66 indices long
	1	001	0	
	2	01	011	
	3	01	101	
	4	10	001	
0 1 1 0	0 1 1	0 1	0 0 1	

		in	de	K	X	ī		Уi		sh	ort	tes	sol	utic	n:	66	ir (ndi	ces	ol a	ng
		1			0	01		0													
		2			0	1		01	1												
		3			0	1		10	1												
		4			1	0		00	1												
0 1	1	0 0	1	1	0	1	0	0	1	0	0	1									

				in	de	X	X	i		Уi		sh	or	tes	SO	luti	on	: 6	6 i	no	lice	s l	ong
		1						01		0													
				2			0	1		011													
	3					01			101														
4				1	0		00	1															
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1							

				in	de	(X	ī		Уi		sh	or	tes	SO	lut	ion	: 6	6	nc	lice	es l	on	g
				1			0	01		0														
				2			0	1		01	1													
				3			0	1		10	1													
				4			1	0		00	1													
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0						

				in	de	X	X	i		Уi		sh	or	tes	SO	lut	ion	: 6	6 i	ndi	ces	loi	ng
				1			0	01		0													
				2			0	1		01	1												
				3			0	1		10	1												
				4			1	0		00	1												
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1			

	inde	$X X_i$	y_i	shortes solution: 66 indices long
	1	001	0	
	2	01	011	
	3	01	101	
	4	10	001	
0 1 1 0	0 1	1 0 1	0 0 1	0 0 1 0 1 1 0 0 1 1 0

				in	de	(X			Уi		sh	or	tes	SC	lut	ion	: 6	6 ii	ndi	ces	s lo	ng	
				1			0	01		0														
				2			0	1		01	1													
				3			0	1		10	1													
				4			1	0		00	1													
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1

				in	dex	(X			Уi		sh	or	tes	SO	lut	ion	: 6	6 ii	ndi	ces	s lo	ng			
				1			0	01		0																
				2			0	1		01	1															
				3			0	1		10	1															
				4			1	0		00	1															
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	0

PCP: complex example

	in	dex	(Xi			Уi		sh	or	tes	SO	lut	ion	: 6	6 iı	ndi	ces	s lo	ng				
	1			00	01		0																	
	2			0	1		01	1																
	3			0	1		10	1																
	4			10	0		00	1																
0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	0	1

				in	de	K	X	i		Уi		sh	or	tes	so	lut	ion	: 6	6 i	ndi	ces	s Ic	ng				
				1			0	01		0													Ī				
				2			0	-		01																	
				3			0	-		10																	
				4			1	0		00	1																
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	1	1	0	1	0	0	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	0	1
0	0	1	0	1	1	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0
1	1	0	0	1	1	0	0	0	1	0	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0
1	0	0	1	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0
1	0	0	1	1	0	0	0	1	0	0	1	0	1														
0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	1	1	0	1	0	0	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	0	1
0	0	1	0	1	1	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0
1	1	0	0	1	1	0	0	0	1	0	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0
1	0	0	1	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0
1	0	0	1	1	0	0	0	1	0	0	1	0	1														

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$. Question: Is there a sequence of indices $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ with $i_1 = 1$ such that $x_{i_1} x_{i_2} \ldots x_{i_n} = y_{i_1} y_{i_2} \ldots y_{i_n}$

Given: A finite set of word pairs $(x_1, y_1), \dots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

PCP

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ with

$$i_1=1$$
 such that $x_{i_1}x_{i_2}\dots x_{i_n}=y_{i_1}y_{i_2}\dots y_{i_n}$

MPCP			
$\Sigma = \{0, \\ \text{index}$.,	
1	$\frac{x_i}{100}$	10	
2	10	01	
3	11	111	

$$p \in MPCP \Leftrightarrow f(p) \in PCP$$
 $MPCP < PCP$

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

PCP

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ with

$$i_1 = 1$$
 such that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$

index	Xi	y i
1	#1#0#0#	#1#0
2	1#0#	#0#1
3	1#1#	#1#1#1)
4	&	#&

 $\Sigma = \{0, 1\} \cup \{\#, \$\}\}$

$$p \in MPCP \Leftrightarrow f(p) \in PCP$$
 $MPCP \leq PCP$

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, ..., i_n \in \{1, 2, ..., k\}$ with

$$i_1 = 1$$
 such that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$

PCP

 $p \in MPCP \Leftrightarrow f(p) \in PCP$ $MPCP \leq PCP$

#1#0

#0#1

#&

#1#1#1)

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

PCP

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ with

$$i_1 = 1$$
 such that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$

 $\Sigma = \{0, 1\} \cup \{\#, \$\}\}$

 $p \in MPCP \Leftrightarrow f(p) \in PCP$

 $MPCP \leq PCP$

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $(x_1, y_1), \ldots (x_k, y_k)$, with $x_i, y_i \in \Sigma^+$.

Question: Is there a sequence of indices $i_1, i_2, \dots, i_n \in \{1, 2, \dots, k\}$ with

 $i_1 = 1$ such that $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$

PCP

I	#	1	#	n	#	n	#	
	1	0	0	1	1	1	1	
	1	0	0	1	0	1	1	

														#	
#	1	#	0	#	0	#	1	#	1	#	1	#	1	#	&

$$p \in MPCP \Leftrightarrow f(p) \in PCP$$

#1#0

#0#1

#&

#1#1#1)

 $MPCP \leq PCP$

• To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y i	
1	#	# <i>c</i> ₀	#
2	C _i #	# <i>c</i> ₀ # <i>c</i> _{i+1}	# C ₀
:	:	:	# 50
n	C _f #	#	
:	:	:	

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y i	
1	#	# <i>c</i> ₀	# C ₀ #
2	C _i #	# <i>c</i> _{i+1}	# C ₀ # C ₁
:	:	:	# 00 # 01
n	C _f #	#	
:	:	:	

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y i						ı
1	#	# <i>c</i> ₀	#	c_0	#	<i>C</i> ₁	#	
2	C _i #	$\#c_{i+1}$						
_	$C_{I}\pi$	πc_{l+1}	#	c_0	#	C ₁	#	<i>C</i> ₂
•			"	-0	"	- 1	"	-2
:		:						
n	C _f #	#						
÷	:	:						

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y i								ı	
1	#	# <i>c</i> ₀	#	c ₀	#	<i>C</i> ₁	#	<i>C</i> ₂	#		
2	C _i #	$\#c_{i+1}$									
_	$C_{ \Pi}$	$\pi \cup_{l+1}$	#	c_0	#	C ₁	#	<i>C</i> ₂	#	<i>C</i> ₃	
			π	00	π	٠,	π	02	π	03	
:	:	:									
n	C _f #	#									
÷	:	:									

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y i										
1	#	# c ₀	#	<i>c</i> ₀	#	<i>C</i> ₁	#	<i>c</i> ₂	#	<i>C</i> ₃	#	
2	C¡#	# <i>c</i> _{i+1}										
_	Opn	11 01+1	#	<i>C</i> ∩	#	c_1	#	<i>C</i> ₂	#	<i>c</i> ₃	#	C ₄
			"	- 0	"	- 1	"		-	- 0	"	
:	:	:										
n	C _f #	#										
:	:	:										

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y i												ı
1	#	# c ₀	#	c ₀	#	C ₁	#	<i>C</i> ₂	#	<i>C</i> ₃	#	<i>C</i> ₄	#	
2	$C_i#$	$\#c_{i+1}$.,		,,		,,	_			,,	_		
	:	:	#	c_0	#	<i>C</i> ₁	#	<i>C</i> ₂	#	<i>C</i> ₃	#	<i>C</i> ₄	#	<i>C</i> ₅
n	Cf #	#												
n	•													
:	:	:												

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

index	Xi	y _i														1
1	#	# <i>c</i> ₀	#	c ₀	#	C ₁	#	<i>C</i> ₂	#	<i>C</i> ₃	#	<i>C</i> ₄	#	<i>C</i> ₅	#	
2	C _i #	$\#c_{i+1}$														
		. '''	#	c_0	#	<i>C</i> ₁	#	<i>C</i> ₂	#	<i>C</i> ₃	#	<i>C</i> ₄	#	<i>C</i> ₅	#	C _e
:	:	:														
n	C _f #	#														
:	:	:														

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

- To prove $H \leq MPCP$ we need a computable reduction function $f: H \to MPCP$ such that $G(M) \in H \Leftrightarrow f(M) \in MPCP$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_0, c_1, c_2 \dots c_f$ with $c_0 = q_0 w$, $c_i \Rightarrow c_{i+1}$, and c_f has a final state.
- The idea is to code this into a MPCP problem:

Be careful, this only shows the main idea. We are oversimplifying here as neither the set of $c_i \Rightarrow c_{i+1}$ nor the set of c_f 's needs to be finite. For a formal proof see Hopcroft & Ullman 1979.

PCP restricted to {0,1}

Proposition

PCP restricted to words over the alphabet {0,1} is undecidable.

• Given a PCP instance p over an alphabet $\{a_1, \dots a_k\}$ construct a PCP instance p' over $\{0, 1\}$ by replacing every a_i by 01^i .

PCP restricted to {0,1}

Proposition

PCP restricted to words over the alphabet {0,1} is undecidable.

- Given a PCP instance p over an alphabet $\{a_1, \dots a_k\}$ construct a PCP instance p' over $\{0, 1\}$ by replacing every a_i by 01^i .
- $p \in PCP \Leftrightarrow p' \in PCP$

PCP restricted to {0,1}

Proposition

PCP restricted to words over the alphabet {0,1} is undecidable.

- Given a PCP instance p over an alphabet $\{a_1, \dots a_k\}$ construct a PCP instance p' over $\{0, 1\}$ by replacing every a_i by 01^i .
- $p \in PCP \Leftrightarrow p' \in PCP$
- $\Rightarrow \textit{PCP} \leq \textit{PCP}_{\{0,1\}}$

Undecidable grammar problems

Proposition

Given two context-free grammars G_1 , G_2 , the following problems are undecidable:

- *Is* $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- *Is* $L(G_1) \subseteq L(G_2)$? (GP_{\subseteq})
- Is $L(G_1) = L(G_2)$? $(GP_{=})$

Proposition

- Is G ambiguous?
- Is $\overline{L(G)}$ infinite?
- Is $L(G_1) \cap L(G_2)$ context-free?
- Is L(G) regular?

Encode PCPs as grammars

Given a PCP instance $\{(x_1,y_1),(x_2,y_2),\dots,(x_k,y_k)\}$ over $\{0,1\}$, construct two grammars

$$G_{1}: \begin{array}{cccc} A & \to & i_{1}Ax_{1}| \dots |i_{k}Ax_{k} \\ A & \to & i_{1}x_{1}| \dots |i_{k}x_{k} \\ B & \to & y_{1}^{R}Bi_{1}| \dots |y_{k}^{R}Bi_{k} \\ B & \to & y_{1}^{R}i_{1}| \dots |y_{k}^{R}i_{k} \end{array}$$

$$G_2$$
: $\begin{array}{ccc} S & \rightarrow & i_1 S i_1 | \dots | i_k S i_k | T \\ T & \rightarrow & 0 T 0 | 1 T 1 | \$ \end{array}$

Encode PCPs as grammars

Given a PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ over $\{0, 1\}$, construct two grammars

Grammar G_1 generates words of the form

$$i_{n_1} i_{n_2} \cdots i_{n_k} \widehat{x}_{n_k} \cdots \widehat{x}_{n_2} \widehat{x}_{n_1} \$ y_{m_1}^{\widehat{R}} y_{m_2}^{\widehat{R}} \cdots y_{m_j}^{\widehat{R}} \widehat{i}_{m_j} \cdots \widehat{i}_{m_2} \widehat{i}_{m_1}$$

Grammar G_2 generates words of the form

$$i_{n_1}i_{n_2}\cdots i_{n_k}110\cdots 1\$1\cdots 011i_{n_k}\cdots i_{n_2}i_{n_1}$$

Encode PCPs as grammars

Given a PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ over $\{0, 1\}$, construct two grammars

Grammar G_1 generates words of the form

$$i_{n_1} i_{n_2} \cdots i_{n_k} x_{n_k} \cdots x_{n_2} x_{n_1}$$
 $y_{m_1}^{R} y_{m_2}^{R} \cdots y_{m_j}^{R} i_{m_j} \cdots i_{m_2} i_{m_1}$

Grammar G_2 generates words of the form

$$i_{n_1}i_{n_2}\cdots i_{n_k}$$
 110\cdots\$1\cdots011\in_k\cdotsin_{n_2}i_{n_1}

 $L(G_1) \cap L(G_2)$ consists of words of the form:

$$i_{n_1}\dots i_{n_k}v\$v^Ri_{n_k}\dots i_{n_1}$$
 with $v=x_{n_1}\dots x_{n_k}$ and $v^R=y^R_{n_k}\dots y^R_{n_1}$

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v \$ v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v \$ v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.
- \Rightarrow $PCP \leq GP_{\cap,\emptyset}$, the problem whether $L(G_1) \cap L(G_2) = \emptyset$ is undecidable.

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.
- \Rightarrow $PCP \leq GP_{\cap,\emptyset}$, the problem whether $L(G_1) \cap L(G_2) = \emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v \$ v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.
- \Rightarrow $PCP \leq GP_{\cap,\emptyset}$, the problem whether $L(G_1) \cap L(G_2) = \emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
- \Rightarrow $PCP \leq GP_{\cap,\infty}$ the problem whether $L(G_1) \cap L(G_2)$ is infinite is undecidable.

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.
- \Rightarrow $PCP \leq GP_{\cap,\emptyset}$, the problem whether $L(G_1) \cap L(G_2) = \emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
- \Rightarrow $PCP \leq GP_{\cap,\infty}$ the problem whether $L(G_1) \cap L(G_2)$ is infinite is undecidable.
- If $L(G_1) \cap L(G_2) \neq \emptyset$ then $L(G_1) \cap L(G_2)$ is not context-free (Pumping-Lemma).

to prove:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $(GP_{\cap,\emptyset})$
- Is $L(G_1) \cap L(G_2)$ infinite? $(GP_{\cap,\infty})$
- Is $L(G_1) \cap L(G_2)$ context-free? $(GP_{\cap,CF})$
- Recall, $L(G_1) \cap L(G_2)$ consists of words of the form: $i_{n_1} \dots i_{n_k} v \$ v^R i_{n_k} \dots i_{n_1}$ with $v = x_{n_1} \dots x_{n_k}$ and $v^R = y_{n_k}^R \dots y_{n_1}^R$
- Hence, the PCP instance $\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\}$ has a solution if and only if $L(G_1) \cap L(G_2) \neq \emptyset$.
- \Rightarrow $PCP \leq GP_{\cap,\emptyset}$, the problem whether $L(G_1) \cap L(G_2) = \emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
- \Rightarrow $PCP \leq GP_{\cap,\infty}$ the problem whether $L(G_1) \cap L(G_2)$ is infinite is undecidable.
- If $L(G_1) \cap L(G_2) \neq \emptyset$ then $L(G_1) \cap L(G_2)$ is not context-free (Pumping-Lemma).
- \Rightarrow $PCP \leq GP_{\cap,CF}$, the problem whether $L(G_1) \cap L(G_2)$ is context-free is undecidable.

Proposition

Deterministic context-free grammars are closed under complement. There is a computable function f such that for each context-free grammar G, f(G) is a context-free grammar with $\overline{L(G)} = L(f(G))$

For a proof see Hopcroft & Ullman 1979.

23 / 24

Proposition

Deterministic context-free grammars are closed under complement. There is a computable function f such that for each context-free grammar G, f(G) is a context-free grammar with $\overline{L(G)} = L(f(G))$

For a proof see Hopcroft & Ullman 1979.

to prove:

- Is $L(G) \subseteq L(G')$? (GP_{\subseteq})
- Is L(G) = L(G')? $(GP_{=})$

Proposition

Deterministic context-free grammars are closed under complement.

There is a computable function f such that for each context-free grammar G, f(G) is a context-free grammar with $\overline{L(G)} = L(f(G))$

For a proof see Hopcroft & Ullman 1979.

to prove:

- Is $L(G) \subseteq L(G')$? (GP_{\subset})
- Is L(G) = L(G')? $(GP_{=})$
- Note that the grammars G_1 and G_2 are deterministic.
- $L(G_1) \cap L(G_2) = \emptyset$ if and only if $L(G_1) \subseteq \overline{L(G_2)}$
- $\Rightarrow GP_{\cap,\emptyset} \leq GP_{\subseteq}$, the problem whether $L(G) \subseteq L(G')$ is undecidable.

Proposition

Deterministic context-free grammars are closed under complement.

There is a computable function f such that for each context-free gram

There is a computable function f such that for each context-free grammar G, f(G) is a context-free grammar with $\overline{L(G)} = L(f(G))$

For a proof see Hopcroft & Ullman 1979.

to prove:

- Is $L(G) \subseteq L(G')$? (GP_{\subset})
- Is L(G) = L(G')? $(GP_{=})$
- Note that the grammars G_1 and G_2 are deterministic.
- $L(G_1) \cap L(G_2) = \emptyset$ if and only if $L(G_1) \subseteq \overline{L(G_2)}$
- $\Rightarrow GP_{\cap,\emptyset} \leq GP_{\subseteq}$, the problem whether $L(G) \subseteq L(G')$ is undecidable.
- $L(G) \subseteq L(G')$ if and only if $L(G) \cup L(G') = L(G')$.
- \Rightarrow the problem whether L(G) = L(G') is undecidable.

- Is G ambiguous? (GP_{amb})
- Is $\overline{L(G)}$ context-free? $(GP_{\overline{CF}})$
- Is L(G) regular? (GP_{reg})

- Is G ambiguous? (GP_{amb})
- Is $\overline{L(G)}$ context-free? $(GP_{\overline{CF}})$
- Is L(G) regular? (GP_{reg})
- Let G_1 and G_2 be as before. Let G_3 be the grammar which generates $L(G_1) \cup L(G_2)$.
 - ▶ The instance of the PCP problem has a solution iff there exists a word $w \in L(G_3)$ which has two derivation trees (one from G_1 and one from G_2).
 - \Rightarrow *PCP* \leq *GP*_{amb}, the problem whether a context-free grammar is ambiguous is undecidable.

- Is G ambiguous? (GP_{amb})
- Is $\overline{L(G)}$ context-free? $(GP_{\overline{CF}})$
- Is L(G) regular? (GP_{reg})
- Let G_1 and G_2 be as before. Let G_3 be the grammar which generates $L(G_1) \cup L(G_2)$.
 - The instance of the PCP problem has a solution iff there exists a word w ∈ L(G₃) which has two derivation trees (one from G₁ and one from G₂).
 - $\Rightarrow PCP \leq GP_{amb}$, the problem whether a context-free grammar is ambiguous is undecidable.
- Remember, G_1 and G_2 are deterministic and $f(G_1)$, $f(G_2)$ generate the complement languages. Let G_4 be the grammar which generates

$$L(G_4) = L(f(G_1)) \cup L(f(G_2)) = \overline{L(G_1)} \cup \overline{L(G_2)} = \overline{L(G_1) \cap L(G_2)}$$

- ▶ The instance of the PCP problem has a solution iff $L(G_1) \cap L(G_2) = \overline{L(G_4)}$ is not context-free.
- $\Rightarrow GP_{\cap,CF} \leq GP_{\overline{CF}}$ The problem whether the complement of a context-free language is context-free is undecidable.

- Is G ambiguous? (GP_{amb})
- Is $\overline{L(G)}$ context-free? $(GP_{\overline{CF}})$
- Is L(G) regular? (GP_{reg})
- Let G_1 and G_2 be as before. Let G_3 be the grammar which generates $L(G_1) \cup L(G_2)$.
 - ▶ The instance of the PCP problem has a solution iff there exists a word $w \in L(G_3)$ which has two derivation trees (one from G_1 and one from G_2).
 - \Rightarrow $PCP \le GP_{amb}$, the problem whether a context-free grammar is ambiguous is undecidable.
- Remember, G_1 and G_2 are deterministic and $f(G_1)$, $f(G_2)$ generate the complement languages. Let G_4 be the grammar which generates

$$L(G_4) = L(f(G_1)) \cup L(f(G_2)) = \overline{L(G_1)} \cup \overline{L(G_2)} = \overline{L(G_1)} \cap L(G_2)$$

- ▶ The instance of the PCP problem has a solution iff $L(G_1) \cap L(G_2) = \overline{L(G_4)}$ is not context-free.
- $\Rightarrow GP_{\cap,CF} \leq GP_{\overline{CF}}$ The problem whether the complement of a context-free language is context-free is undecidable.
- L(G₁) ∩ L(G₂) = ∅ iff L(G₄) = Σ*. Remember: For regular languages it is easy to check whether L = Σ*.
 - $\Rightarrow GP_{\cap,\emptyset} \leq GP_{reg}$ The problem whether a context-free grammar generates a regular language is undecidable.