Decision Problems
 Introduction to Formal Language Theory — day 5

Wiebke Petersen, Kata Balogh

Heinrich-Heine-Universität

NASSLLI 2014

Decision problem

A decision problem is a problem of the form "Given $\left(x_{1}, \ldots, x_{n}\right)$, can we decide whether y holds?"

- A tuple $\left(x_{1}, \ldots, x_{n}\right)$ is called an instance of the problem.
- A tuple $\left(x_{1}, \ldots, x_{n}\right)$ for which y holds is called a positive instance of the problem.

Languages and problems

- Problems have the form: "Can we decide for every x whether it has property P?"
- Languages as problems: "Can we decide for every word whether it belongs to L?"
- Problems as languages: "The language of all x which have property P."

Languages and problems

- Problems have the form: "Can we decide for every x whether it has property P?"
- Languages as problems: "Can we decide for every word whether it belongs to L?"
- Problems as languages: "The language of all x which have property P."

examples:

- Can we decide for any pair (M, w) consisting of a Turing machine M and a word w whether M halts on w ?
- Can we decide for any pair $\left(G_{1}, G_{2}\right)$ of two context-free grammars whether $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- Can we decide for any context-free grammar G whether $L(G)=\emptyset$?

Languages and problems

problem instances versus problems

- Single instances are not problems! Whether ' $S \rightarrow a$ ' generates a word is simple to answer, but not the general problem ranging over all possible instances.
- Problems can be represented by sets with positive instances as elements.

decidabiltiy

A language $L \subseteq \Sigma^{*}$ is decidable if its characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$ is computable:

$$
\chi_{L}(w)= \begin{cases}1, & w \in L \\ 0, & w \notin L\end{cases}
$$

A language $L \subseteq \Sigma^{*}$ is semi-decidable if $\chi_{L}^{\prime}: \Sigma^{*} \rightarrow\{0,1\}$ is computable:

$$
\chi_{L}(w)= \begin{cases}1, & w \in L \\ \text { undefined, }, & w \notin L\end{cases}
$$

decidabiltiy

A language $L \subseteq \Sigma^{*}$ is decidable if its characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$ is computable:

$$
\chi_{L}(w)= \begin{cases}1, & w \in L \\ 0, & w \notin L\end{cases}
$$

A language $L \subseteq \Sigma^{*}$ is semi-decidable if $\chi_{L}^{\prime}: \Sigma^{*} \rightarrow\{0,1\}$ is computable:

$$
\chi_{L}(w)= \begin{cases}1, & w \in L \\ \text { undefined }, & w \notin L\end{cases}
$$

- L is decidable if and only if L and \bar{L} are semi-decidable.
- A language L is recursively enumerable (RE) if and only if L is semi-decidable.

Decision problems for formal languages

Given: grammars $G=(N, \Sigma, S, R), G^{\prime}=\left(N^{\prime}, \Sigma^{\prime}, S^{\prime}, R^{\prime}\right)$, and a word $w \in \Sigma$: word problem: Is w derivable from G, i.e. $w \in L(G)$? emptiness problem: Does G generate a nonempty language, i.e. $L(G) \neq \emptyset$? equivalence problem: Do G and G^{\prime} generate the same language, i.e.

$$
L(G)=L\left(G^{\prime}\right) ?
$$

Decision problems for formal languages

	Type3	Type2	Type1	Type0
word problem	D	D	D	U
emptiness problem	D	D	U	\mathbf{U}
equivalence problem	D	U	\mathbf{U}	\mathbf{U}

D: decidable; U: undecidable

Decision problems for formal languages

	Type3	Type2	Type1	Type0
word problem	D	D	D	U
emptiness problem	D	D	U	U
equivalence problem	D	U	U	U

D: decidable; U: undecidable

- word problem for Type1: use the property that the derivation string does not shrink in any derivation step.
- emptyness problem for Type2: bottom up argument over the non-terminals from which terminal strings can be derived.
- equivalence problem for Type3: check via minimal automaton.

Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It takes as input

- the description of a Turing machine M and
- an input string w
and accepts w if and only if M accepts w.

Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It takes as input

- the description of a Turing machine M and
- an input string w
and accepts w if and only if M accepts w.
Construction idea: Use a 2-tape Turing machine
- 1st tape: encoding of M
- 2nd tape: w

The universal machine reads the code of M on tape 1 to see what to do with the word on tape 2 (tape 1 is not changed).

Gödel numbering

A Gödel numbering is a function $G: M \rightarrow \mathbb{N}$ with

- G is injective
- $G(M)$ is decidable
- $G: M \rightarrow \mathbb{N}$ and $G^{-1}: G(M) \rightarrow M$ are computable

Gödel numbering

A Gödel numbering is a function $G: M \rightarrow \mathbb{N}$ with

- G is injective
- $G(M)$ is decidable
- $G: M \rightarrow \mathbb{N}$ and $G^{-1}: G(M) \rightarrow M$ are computable

Gödel numbering of TMs (using binary code)

- Given $M=\left(Q, \Sigma, \Gamma, \delta, q_{1}, \square, F\right)$, we assume that

$$
\begin{aligned}
& Q=\left\{q_{1}, q_{2}, \ldots\right\} \\
& \Gamma=\left\{X_{1}, X_{2}, \ldots\right\} \\
& \square=X_{1} \\
& F=\left\{q_{2}\right\} \\
& D_{1}=R, D_{2}=L
\end{aligned}
$$

- Code each transition $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ as $0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}$
- Note that this code never has two successive 1's.
- Code M by concatenating all transition codes C_{i} with '11'-strings as separators: $G(M)=11 C_{1} 11 C_{2} 11 C_{3} \ldots 11 C_{n}$.
- $M \mapsto G(M)$ is a Gödel numbering of Turing machines.

Note: $\{G(M) \mid M$ is a TM $\}$ and $\{M \mid M$ is a TM $\}$ are countable sets.

Halting problem

$H=\{G(M) \# w \mid M(w)$ halts $\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w ?

Halting problem

$H=\{G(M) \# w \mid M(w)$ halts $\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w ?

The halting problem is undecidable.
Proof by a diagonal argument:

	w_{1}							w_{2}	w_{3}	w_{4}	w_{5}
w_{6}	w_{7}	w_{8}	w_{9}	\ldots							
G_{1}	0	1	1	0	1	0	0	1	1	\ldots	
G_{2}	0	1	0	1	1	1	0	1	0	\ldots	
G_{3}	1	0	1	0	1	0	1	0	1	\ldots	
G_{4}	0	1	1	1	0	1	0	1	1	\ldots	
G_{5}	0	1	0	1	0	1	1	0	1	\ldots	
G_{6}	1	1	0	1	0	1	1	0	0	\ldots	
G_{7}	0	1	0	1	0	1	0	1	0	\ldots	
G_{8}	1	1	1	0	1	0	1	0	1	\ldots	
G_{9}	1	1	0	1	0	1	1	1	1	\ldots	
\vdots											

- Assume that the halting problem is decidable.

Halting problem

$H=\{G(M) \# w \mid M(w)$ halts $\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w ?

The halting problem is undecidable.
Proof by a diagonal argument:

	w_{1}							w_{2}	w_{3}	w_{4}	w_{5}
w_{6}	w_{7}	w_{8}	w_{9}	\ldots							
G_{1}	0	1	1	0	1	0	0	1	1	\ldots	
G_{2}	0	1	0	1	1	1	0	1	0	\ldots	
G_{3}	1	0	1	0	1	0	1	0	1	\ldots	
G_{4}	0	1	1	1	0	1	0	1	1	\ldots	
G_{5}	0	1	0	1	0	1	1	0	1	\ldots	
G_{6}	1	1	0	1	0	1	1	0	0	\ldots	
G_{7}	0	1	0	1	0	1	0	1	0	\ldots	
G_{8}	1	1	1	0	1	0	1	0	1	\ldots	
G_{9}	1	1	0	1	0	1	1	1	1	\ldots	
\vdots											

- Assume that the halting problem is decidable.
\Rightarrow there is a TM H which computes for every TM M and every word w, whether M halts on w. Let w_{i} be the i-th word and G_{i} the TM with the i-th Gödel number.

Halting problem

$H=\{G(M) \# w \mid M(w)$ halts $\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w ?

The halting problem is undecidable.
Proof by a diagonal argument:

	w_{1}							w_{2}	w_{3}
w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	\ldots			
G_{1}	0	1	1	0	1	0	0	1	1

- Assume that the halting problem is decidable.
\Rightarrow there is a TM H which computes for every TM M and every word w, whether M halts on w. Let w_{i} be the i-th word and G_{i} the TM with the i-th Gödel number.
- From H construct a second TM H^{\prime} which takes a word w_{i} as input and acts as follows:
- Whenever H outputs 1 for $\left(G_{i}, w_{i}\right), H^{\prime}$ goes into an endless loop.
- Whenever H outputs 0 for $\left(G_{i}, w_{i}\right), H^{\prime}$ halts.

Halting problem

$H=\{G(M) \# w \mid M(w)$ halts $\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w ?

The halting problem is undecidable. Proof by a diagonal argument:

	w_{1}							w_{2}	w_{3}	w_{4}	w_{5}
w_{6}	w_{7}	w_{8}	w_{9}	\ldots							
G_{1}	0	1	1	0	1	0	0	1	1	\ldots	
G_{2}	0	1	0	1	1	1	0	1	0	\ldots	
G_{3}	1	0	1	0	1	0	1	0	1	\ldots	
G_{4}	0	1	1	1	0	1	0	1	1	\ldots	
G_{5}	0	1	0	1	0	1	1	0	1	\ldots	
G_{6}	1	1	0	1	0	1	1	0	0	\ldots	
G_{7}	0	1	0	1	0	1	0	1	0	\ldots	
G_{8}	1	1	1	0	1	0	1	0	1	\ldots	
G_{9}	1	1	0	1	0	1	1	1	1	\ldots	
\vdots											

- Assume that the halting problem is decidable.
\Rightarrow there is a TM H which computes for every TM M and every word w, whether M halts on w. Let w_{i} be the i-th word and G_{i} the TM with the i-th Gödel number.
- From H construct a second TM H^{\prime} which takes a word w_{i} as input and acts as follows:
- Whenever H outputs 1 for $\left(G_{i}, w_{i}\right), H^{\prime}$ goes into an endless loop.
- Whenever H outputs 0 for $\left(G_{i}, w_{i}\right), H^{\prime}$ halts.
$\Rightarrow H^{\prime}$ is a TM of which the Gödel number is not in the matrix.

Halting problem

$H=\{G(M) \# w \mid M(w)$ halts $\}$

- Given a Turing machine M and an input word w.
- Does M halt if it runs on input w ?

The halting problem is undecidable. Proof by a diagonal argument:

	w_{1}							w_{2}	w_{3}	w_{4}
w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	\ldots					
G_{1}	0	1	1	0	1	0	0	1	1	\ldots
G_{2}	0	1	0	1	1	1	0	1	0	\ldots
G_{3}	1	0	1	0	1	0	1	0	1	\ldots
G_{4}	0	1	1	1	0	1	0	1	1	\ldots
G_{5}	0	1	0	1	0	1	1	0	1	\ldots
G_{6}	1	1	0	1	0	1	1	0	0	\ldots
G_{7}	0	1	0	1	0	1	0	1	0	\ldots
G_{8}	1	1	1	0	1	0	1	0	1	\ldots
G_{9}	1	1	0	1	0	1	1	1	1	\ldots
\vdots										

- Assume that the halting problem is decidable.
\Rightarrow there is a TM H which computes for every TM M and every word w, whether M halts on w. Let w_{i} be the i-th word and G_{i} the TM with the i-th Gödel number.
- From H construct a second TM H^{\prime} which takes a word w_{i} as input and acts as follows:
- Whenever H outputs 1 for $\left(G_{i}, w_{i}\right), H^{\prime}$ goes into an endless loop.
- Whenever H outputs 0 for $\left(G_{i}, w_{i}\right), H^{\prime}$ halts.
$\Rightarrow H^{\prime}$ is a TM of which the Gödel number is not in the matrix.
\Rightarrow the assumption is wrong; the halting problem is undecidable.

Reduction

Given two languages $L \subseteq \Sigma^{*}$ and $K \subseteq \Gamma^{*}$. L is reducible to K (in symbols $L \leq K$) if there exists a total function $f: \Sigma^{*} \rightarrow \Gamma^{*}$, such that

- f is computable and
- $w \in L \Leftrightarrow f(x) \in K$ for all $w \in \Sigma^{*}$.

Reduction

Given two languages $L \subseteq \Sigma^{*}$ and $K \subseteq \Gamma^{*}$. L is reducible to K (in symbols $L \leq K$) if there exists a total function $f: \Sigma^{*} \rightarrow \Gamma^{*}$, such that

- f is computable and
- $w \in L \Leftrightarrow f(x) \in K$ for all $w \in \Sigma^{*}$.

Lemma

- If $L \leq K$ and K is decidable, then L is decidable.
- If $L \leq K$ and K is semi-decidable, then L is semi-decidable.
- If $L \leq K$ and L is undecidable, then K is undecidable.

Halting problem on the empty tape

$H_{0}=\{G(M) \mid M(\epsilon)$ halts $\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.

Halting problem on the empty tape

$H_{0}=\{G(M) \mid M(\epsilon)$ halts $\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.
Proof by reduction $H \leq H_{0}$:

- Let $G(M) \# w$ be an instance of H.

Halting problem on the empty tape

$H_{0}=\{G(M) \mid M(\epsilon)$ halts $\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.
Proof by reduction $H \leq H_{0}$:

- Let $G(M) \# w$ be an instance of H.
- Define a Turing machine M_{w} which starts with the empty tape, writes w onto the tape, and simulates M on w.

Halting problem on the empty tape

$H_{0}=\{G(M) \mid M(\epsilon)$ halts $\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.
Proof by reduction $H \leq H_{0}$:

- Let $G(M) \# w$ be an instance of H.
- Define a Turing machine M_{w} which starts with the empty tape, writes w onto the tape, and simulates M on w.
- $f: G(M) \# w \mapsto G\left(M_{w}\right)$ is a computable function and
- $G(M) \# w \in H \Leftrightarrow G\left(M_{w}\right) \in H_{0}$

Halting problem on the empty tape

$H_{0}=\{G(M) \mid M(\epsilon)$ halts $\}$

- Given a Turing machine M.
- Does M halt if it runs on input ϵ ?

The halting problem on the empty tape is undecidable.
Proof by reduction $H \leq H_{0}$:

- Let $G(M) \# w$ be an instance of H.
- Define a Turing machine M_{w} which starts with the empty tape, writes w onto the tape, and simulates M on w.
- $f: G(M) \# w \mapsto G\left(M_{w}\right)$ is a computable function and
- $G(M) \# w \in H \Leftrightarrow G\left(M_{w}\right) \in H_{0}$
$\Rightarrow H_{0}$ is undecidable.

Theorem of Rice

If M is a Turing machine let f_{M} be the function computed by M. A functional property of M, i.e. a property of f_{M} is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

If M is a Turing machine let f_{M} be the function computed by M. A functional property of M, i.e. a property of f_{M} is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

Let P be a non-trivial property of Turing machines.

- Given a Turing machine M.
- Does M has property P ?

Any non-trivial property of a Turing machine is undecidable.

Theorem of Rice

If M is a Turing machine let f_{M} be the function computed by M. A functional property of M, i.e. a property of f_{M} is non-trivial if there is at least one Turing machine which has the property and one which has it not.

Theorem of Rice

Let P be a non-trivial property of Turing machines.

- Given a Turing machine M.
- Does M has property P ?

Any non-trivial property of a Turing machine is undecidable.

examples of non-trivial properties

- The computed function is constant.
- The Turing machine computes the successor function.
- The Turing machine computes a total function.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).
- As P is non-trivial there is a TM M_{P} with $G\left(M_{P}\right) \in P$.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).
- As P is non-trivial there is a TM M_{P} with $G\left(M_{P}\right) \in P$.
- Construct a new TM M^{\prime}. For any input w
- M^{\prime} first computes $M(\epsilon)$ and if it halts
- M^{\prime} computes $M_{P}(w)$

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).
- As P is non-trivial there is a TM M_{P} with $G\left(M_{P}\right) \in P$.
- Construct a new TM M^{\prime}. For any input w
- M^{\prime} first computes $M(\epsilon)$ and if it halts
- M^{\prime} computes $M_{P}(w)$

If $G(M) \notin H_{0}: M(\epsilon)$ does not halt and M^{\prime} computes M_{\perp}, thus $G\left(M^{\prime}\right) \notin P$

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).
- As P is non-trivial there is a TM M_{P} with $G\left(M_{P}\right) \in P$.
- Construct a new TM M^{\prime}. For any input w
- M^{\prime} first computes $M(\epsilon)$ and if it halts
- M^{\prime} computes $M_{P}(w)$

If $G(M) \notin H_{0}: M(\epsilon)$ does not halt and M^{\prime} computes M_{\perp}, thus $G\left(M^{\prime}\right) \notin P$
If $G(M) \in H_{0}: M(\epsilon)$ does halt and M computes M_{P}, thus $G\left(M^{\prime}\right) \in P$.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).
- As P is non-trivial there is a TM M_{P} with $G\left(M_{P}\right) \in P$.
- Construct a new TM M^{\prime}. For any input w
- M^{\prime} first computes $M(\epsilon)$ and if it halts
- M^{\prime} computes $M_{P}(w)$

If $G(M) \notin H_{0}: M(\epsilon)$ does not halt and M^{\prime} computes M_{\perp}, thus $G\left(M^{\prime}\right) \notin P$
If $G(M) \in H_{0}: M(\epsilon)$ does halt and M computes M_{P}, thus

$$
G\left(M^{\prime}\right) \in P .
$$

- As $f: G(M) \mapsto G\left(M^{\prime}\right)$ is computable and
 $G(M) \in H_{0} \Leftrightarrow G\left(M^{\prime}\right) \in P$, we proved $H_{0} \leq P$.

Proof of Rice's theorem

Given a non-trivial functional property. Proof by reduction $H_{0} \leq P$:

- Construct a TM M_{\perp} which never halts.
- Assume M_{\perp} does not have property P (argument for $G\left(M_{\perp}\right) \in P$ is analogous).
- As P is non-trivial there is a TM M_{P} with $G\left(M_{P}\right) \in P$.
- Construct a new TM M^{\prime}. For any input w
- M^{\prime} first computes $M(\epsilon)$ and if it halts
- M^{\prime} computes $M_{P}(w)$

If $G(M) \notin H_{0}: M(\epsilon)$ does not halt and M^{\prime} computes M_{\perp}, thus $G\left(M^{\prime}\right) \notin P$
If $G(M) \in H_{0}: M(\epsilon)$ does halt and M computes M_{P}, thus $G\left(M^{\prime}\right) \in P$.

- As $f: G(M) \mapsto G\left(M^{\prime}\right)$ is computable and $G(M) \in H_{0} \Leftrightarrow G\left(M^{\prime}\right) \in P$, we proved $H_{0} \leq P$.
- As H_{0} is undecidable, P is undecidable as well.

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

index	x_{i}	y_{i}				
1	01000	01	0		0	
2	0	000	011			
3	01	1				
solution:	1223					

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

index	x_{i}	y_{i}	0 1 0 0 0				
1	01000	01					
2	0	000					
3	01	1	0				

solution: 1223

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

index	x_{i}	y_{i}
1	01000	01
2	0	000
3	01	1

0	1	0	0	0	0	0			
0	1	0	0	0	0	0	$	$	0
:---:									

solution: 1223

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

index	x_{i}	y_{i}
1	01000	01
2	0	000
3	01	1

0	1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	1

solution: 1223

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$.
Question: Is there a sequence of indices $\dot{i}_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

solution: 1223

example without solution

index	x_{i}	y_{i}
1	0	01
2	100	001

$$
\begin{array}{|l|l|l|l|}
\hline 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$

no solution

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$.
Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

solution: 1223

example without solution

index	x_{i}	y_{i}
1	0	01
2	100	001

0 1 0 0 1 0 0 0 1 0 0 1 0 0

no solution

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$.
Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

ind		y_{i}		1	,						
	01000	01									
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	01	000			0						

solution: 1223

example without solution

index	x_{i}	y_{i}
1	0	01
2	100	001

0	1	0	0	1	0	0	1	0	0
0	1	1	0	0	1	0	0	1	0

no solution

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$.
Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

ind		y_{i}		1	,						
	01000	01									
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	01	000			0						

solution: 1223

example without solution

index	x_{i}	y_{i}
1	0	01
2	100	001

0	1	0	0	1	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	1	0	0	1	0	0

no solution

Post's Correspondence Problem (PCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$.
Question: Is there a sequence of indices $\dot{i}_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$?

example with solution

solution: 1223

example without solution

index	x_{i}	y_{i}
1	0	01
2	100	001

0	1	0	0	1	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	1	0	0	1	0	0

PCP: complex example

		index	x_{i}	y_{i}
		shortes solution: 66 indices long		
		001	0	
2	01	011		
		01	101	
		01		
			10	001
0	1			

0	1	1

PCP: complex example

0	1	1	0	0

PCP: complex example

0	1	1	0	0	1	1	0

PCP: complex example

			index					x_{i}	y_{i}	shortes solution: 66 indices long
				1				001	0	
				2				01	011	
				3				01	101	
				4				10	001	
0	1	1	0	0	1	1		0		

| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.010

PCP: complex example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array} 0
$$

PCP: complex example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array} 0
$$

PCP: complex example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$

PCP: complex example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

PCP: complex example

PCP: complex example

PCP: complex example

	01	1	0			0	1	0		0	0	1	01	11	10	0	1	10	0		1	01		
	00																							

PCP: complex example

0	1	1	0	0	11	0	1	0	1	0	1	0	111	0	01	11	0	01	1	0			1

PCP: complex example

0	1	1	0	0	1	1	0	0	01	0	011	01	111	00	1	1	0	11	0		1
	0	1	1	0	1	0															

PCP: complex example

| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | 0

PCP: complex example

0	1	1	0	,	1	10	0	,	O	1	0	-	,	0	,	,	1	10	0	,	0			
0	0	1	1	0	10	0	0	1	O	-	1	0	1											

PCP: complex example

PCP: complex example

0		1	0			0		10	0	1	0		0	1	1	0	0	1	10	01	1		
0	0	1	1	-	10	0		1	0	1	1		10	0	,	O	0	1					

PCP: complex example

0	1	1	0	D		0	1	0	-	1	0	0	10	1	11	10	0		1	0	01	,	
0	0	1	1	D		0	1	0	0	1	1	0	1	0	11	10	0	1	0	1	1		

PCP: complex example

| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | 0

PCP: complex example

0		1		1		0		0	0		0		0	1	1	0	0	1	1	0	0	11	0		
0		1			0	0		0	0		10		0	0	1	0	0		0	1	1	0	0		

PCP: complex example

index	x_{i}	y_{i}
1	001	0
2	01	011
3	01	101
4	10	001

0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	1	1	0	1	0	0	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	0	1
0	0	1	0	1	1	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0
1	1	0	0	1	1	0	0	0	1	0	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0
1	0	0	1	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0
1	0	0	1	1	0	0	0	1	0	0	1	0	1														

0	1	1	0	0	1	1	0	1	0	0		1		0	1	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	1	1	0	1	0	0	1	0	0		1		0	1	0	0	1	0	0	1	0	1	1	0	0	0	1
0	0	1	0	,	1	0	1	0		10	0	0		0	0	1	0	1	0	0	1	0	0	1	0	0	1	
1	1	0	0	1	1	0	0	0		10		1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0
1	0	0	1	0	1	1	0	0		01	10	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0
	0	0	1	1	0	0	0	1	1	0		10		1														

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ with $i_{1}=1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ with $i_{1}=1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$

MPCP

$\Sigma=\{0,1\}$

index	x_{i}	y_{i}
1	100	10
2	10	01
3	11	111

1	0	0
1	0	

$\#$	1	$\#$	0	$\#$	0	$\#$
$\#$	1	$\#$	0			

PCP

$\Sigma=\{0,1\} \cup\{\#, \$\}\}$

$$
\begin{aligned}
& p \in M P C P \Leftrightarrow f(p) \in P C P \\
& M P C P \leq P C P
\end{aligned}
$$

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ with $i_{1}=1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$

MPCP

$\Sigma=\{0,1\}$

index	x_{i}	y_{i}
1	100	10
2	10	01
3	11	111

1	0	0	1	0
1	0	0	1	

$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	0	$\#$
$\#$	1	$\#$	0	$\#$	0	$\#$	1			

PCP

$\Sigma=\{0,1\} \cup\{\#, \$\}\}$

$$
\begin{aligned}
& p \in M P C P \Leftrightarrow f(p) \in P C P \\
& M P C P \leq P C P
\end{aligned}
$$

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ with $i_{1}=1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$

MPCP

$\Sigma=\{0,1\}$

index	x_{i}	y_{i}
1	100	10
2	10	01
3	11	111

1	0	0	1	0	1	1
1	0	0	1	1	1	1

$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	0	$\#$	1	$\#$	1
	$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	1	$\#$	1	$\#$

PCP

$$
\Sigma=\{0,1\} \cup\{\#, \$\}\}
$$

$$
\begin{aligned}
& p \in M P C P \Leftrightarrow f(p) \in P C P \\
& M P C P \leq P C P
\end{aligned}
$$

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ with $i_{1}=1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$

MPCP

$\Sigma=\{0,1\}$

index	x_{i}	y_{i}
1	100	10
2	10	01
3	11	111

1	0	0	1	0	1	1
1	0	0	1	1	1	1

$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	0	$\#$	1	$\#$	1	$\#$
$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	1	$\#$	1	$\#$	1	$\#$

$$
p \in M P C P \Leftrightarrow f(p) \in P C P
$$

$$
M P C P \leq P C P
$$

Modified Post's Correspondence Problem (MPCP)

Given: A finite set of word pairs $\left(x_{1}, y_{1}\right), \ldots\left(x_{k}, y_{k}\right)$, with $x_{i}, y_{i} \in \Sigma^{+}$. Question: Is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ with $i_{1}=1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$

MPCP

$\Sigma=\{0,1\}$

index	x_{i}	y_{i}
1	100	10

2	10	01
3	11	111

1	0	0	1	0	1	1
1	0	0	1	1	1	1

$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	0	$\#$	1	$\#$	1	$\#$
$\#$	1	$\#$	0	$\#$	0	$\#$	1	$\#$	1	$\#$	1	$\#$	1	$\#$

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

index	x_{i}	y_{i}		
1	$\#$	$\# c_{0}$	$\#$	
2	$c_{i} \#$	$\# c_{i+1}$		$\#$
\vdots	\vdots	\vdots		c_{0}
\vdots	$c_{f} \#$	$\#$		
\vdots	\vdots	\vdots		

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

index	x_{i}	y_{i}	\#	\# c_{0}	\#	
1	\#	$\# c_{0}$				
2	$c_{i} \#$	$\# c_{i+1}$	\#	c_{0}	\#	c_{1}
:	!	!				
n	$c_{f} \#$	\#				
!	!	\				

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

$\frac{\text { index }}{1}$	就	$y_{i}$$\#$$c_{0}$	\#	c_{0}	\#	c_{1}	\#	c_{2}	\#	C_{3}	\#	
2	$c_{i} \#$	$\# c_{i+1}$	\#	c_{0}	\#	c_{1}	\#	C_{2}	\#	C_{3}	\#	C_{4}
:	\vdots	!										
n	$c_{f} \#$	\#										

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

index	x_{i}	y_{i}												
1	$\#$	$\#$	$\# c_{0}$											
	$\#$	$\#$	c_{0}	$\#$	c_{1}	$\#$	c_{2}	$\#$	c_{3}	$\#$	c_{4}	$\#$	c_{5}	$\#$
2	$c_{i} \#$	$\# c_{i+1}$												
\vdots	\vdots	\vdots		$\#$	c_{0}	$\#$	c_{1}	$\#$	c_{2}	$\#$	c_{3}	$\#$	c_{4}	$\#$

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

index	x_{i}	y_{i}
1	$\#$	$\# c_{0}$
2	$c_{i} \#$	$\# c_{i+1}$
\vdots	\vdots	\vdots
n	$c_{f} \#$	$\#$
\vdots	\vdots	\vdots

$\#$	c_{0}	$\#$	c_{1}	$\#$	c_{2}	$\#$	c_{3}	$\#$	c_{4}	$\#$	c_{5}	$\#$	c_{e}	$\#$
$\#$ c_{0} $\#$ c_{1} $\#$ c_{2} $\#$ c_{3} $\#$ c_{4} $\#$ c_{5} $\#$ c_{e}	$\#$													

The MPCP is undecidable, proof by $H \leq M P C P$

- To prove $H \leq M P C P$ we need a computable reduction function $f: H \rightarrow M P C P$ such that $G(M) \in H \Leftrightarrow f(M) \in M P C P$.
- A machine-word pair (M, w) is an instance of H, i.e. $G(M) \# w \in H$, iff there is a sequence of configurations $c_{0}, c_{1}, c_{2} \ldots c_{f}$ with $c_{0}=q_{0} w$, $c_{i} \Rightarrow c_{i+1}$, and c_{f} has a final state.
- The idea is to code this into a MPCP problem:

index	x_{i}	y_{i}
1	$\#$	$\# c_{0}$
2	$c_{i} \#$	$\# c_{i+1}$
\vdots	\vdots	\vdots
n	$c_{f} \#$	$\#$
\vdots	\vdots	\vdots

$\#$	c_{0}	$\#$	c_{1}	$\#$	c_{2}	$\#$	c_{3}	$\#$	c_{4}	$\#$	c_{5}	$\#$	c_{e}	$\#$
$\#$	c_{0}	$\#$	c_{1}	$\#$	c_{2}	$\#$	c_{3}	$\#$	c_{4}	$\#$	c_{5}	$\#$	c_{e}	$\#$

Be careful, this only shows the main idea. We are oversimplifying here as neither the set of $c_{i} \Rightarrow c_{i+1}$ nor the set of c_{f} 's needs to be finite.
For a formal proof see Hopcroft \& Ullman 1979.

PCP restricted to $\{0,1\}$

Proposition

PCP restricted to words over the alphabet $\{0,1\}$ is undecidable.

- Given a PCP instance p over an alphabet $\left\{a_{1}, \ldots a_{k}\right\}$ construct a PCP instance p^{\prime} over $\{0,1\}$ by replacing every a_{i} by 01^{i}.

PCP restricted to $\{0,1\}$

Proposition

PCP restricted to words over the alphabet $\{0,1\}$ is undecidable.

- Given a PCP instance p over an alphabet $\left\{a_{1}, \ldots a_{k}\right\}$ construct a PCP instance p^{\prime} over $\{0,1\}$ by replacing every a_{i} by 01^{i}.
- $p \in P C P \Leftrightarrow p^{\prime} \in P C P$

PCP restricted to $\{0,1\}$

Proposition

PCP restricted to words over the alphabet $\{0,1\}$ is undecidable.

- Given a PCP instance p over an alphabet $\left\{a_{1}, \ldots a_{k}\right\}$ construct a PCP instance p^{\prime} over $\{0,1\}$ by replacing every a_{i} by 01^{i}.
- $p \in P C P \Leftrightarrow p^{\prime} \in P C P$
$\Rightarrow P C P \leq P C P_{\{0,1\}}$

Undecidable grammar problems

Proposition

Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$? $\left(G P_{\subseteq}\right)$
- Is $L\left(G_{1}\right)=L\left(G_{2}\right)$? ($\left.G P_{=}\right)$

Proposition

Given a context-free grammars G, the following problems are undecidable:

- Is G ambiguous?
- Is $\overline{L(G)}$ infinite?
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- Is $L(G)$ regular?

Encode PCPs as grammars

Given a PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ over $\{0,1\}$, construct two grammars

$$
\begin{aligned}
& S \\
& A
\end{aligned} \quad A \$ B \quad i_{1} A x_{1}|\ldots| i_{k} A,
$$

Encode PCPs as grammars

Given a PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ over $\{0,1\}$, construct two grammars

$$
G_{1}: \begin{aligned}
S & \rightarrow A \$ B \\
A & \rightarrow i_{1} A x_{1}|\ldots| i_{k} A x_{k} \\
A & \rightarrow i_{1} x_{1}|\ldots| i_{k} x_{k} \\
B & \rightarrow y_{1}^{R} B i_{1}|\ldots| y_{k}^{R} B i_{k} \\
B & \rightarrow y_{1}^{R} i_{1}|\ldots| y_{k}^{R} i_{k}
\end{aligned}
$$

Grammar G_{1} generates words of the form

Grammar G_{2} generates words of the form

Encode PCPs as grammars

Given a PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ over $\{0,1\}$, construct two grammars

$$
\begin{aligned}
S & \rightarrow A \$ B \\
A & \rightarrow i_{1} A x_{1}|\ldots| i_{k} A x_{k} \\
G_{1}: & \rightarrow i_{1} x_{1}|\ldots| i_{k} x_{k} \\
B & \rightarrow y_{1}^{R} B i_{1}|\ldots| y_{k}^{R} B i_{k} \\
B & \rightarrow y_{1}^{R} i_{1}|\ldots| y_{k}^{R} i_{k}
\end{aligned}
$$

Grammar G_{1} generates words of the form

Grammar G_{2} generates words of the form

$L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form:
$i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$

Undecidable grammar problems (proofs)

to prove:
Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$

Undecidable grammar problems (proofs)

to prove:
Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$

Undecidable grammar problems (proofs)

to prove:
Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$
- Hence, the PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ has a solution if and only if $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.

Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$
- Hence, the PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ has a solution if and only if $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.
$\Rightarrow P C P \leq G P_{\cap, \emptyset}$, the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ is undecidable.

Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$
- Hence, the PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ has a solution if and only if $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.
$\Rightarrow P C P \leq G P_{\cap, \emptyset}$, the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.

Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$
- Hence, the PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ has a solution if and only if $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.
$\Rightarrow P C P \leq G P_{\cap, \emptyset}$, the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
$\Rightarrow P C P \leq G P_{\cap, \infty}$ the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ is infinite is undecidable.

Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$
- Hence, the PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ has a solution if and only if $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.
$\Rightarrow P C P \leq G P_{\cap, \emptyset}$, the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
$\Rightarrow P C P \leq G P_{\cap, \infty}$ the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ is infinite is undecidable.
- If $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$ then $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ is not context-free (Pumping-Lemma).

Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars G_{1}, G_{2}, the following problems are undecidable:

- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$? $\left(G P_{\cap, \emptyset}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ infinite? $\left(G P_{\cap, \infty}\right)$
- Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free? $\left(G P_{\cap, C F}\right)$
- Recall, $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ consists of words of the form: $i_{n_{1}} \ldots i_{n_{k}} v \$ v^{R} i_{n_{k}} \ldots i_{n_{1}}$ with $v=x_{n_{1}} \ldots x_{n_{k}}$ and $v^{R}=y_{n_{k}}^{R} \ldots y_{n_{1}}^{R}$
- Hence, the PCP instance $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$ has a solution if and only if $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.
$\Rightarrow P C P \leq G P_{\cap, \emptyset}$, the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ is undecidable.
- If a PCP instance has one solution it has infinitely many solutions.
$\Rightarrow P C P \leq G P_{\cap, \infty}$ the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ is infinite is undecidable.
- If $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$ then $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ is not context-free (Pumping-Lemma).
$\Rightarrow P C P \leq G P_{\cap, C F}$, the problem whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ is context-free is undecidable.

Undecidable grammar problems (proofs)

Proposition

Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar $G, f(G)$ is a context-free grammar with $\overline{L(G)}=L(f(G))$

For a proof see Hopcroft \& Ullman 1979.

Undecidable grammar problems (proofs)

Proposition

Deterministic context-free grammars are closed under complement. There is a computable function f such that for each context-free grammar $G, f(G)$ is a context-free grammar with $\overline{L(G)}=L(f(G))$

For a proof see Hopcroft \& Ullman 1979.
to prove:
Given two context-free grammars G, G^{\prime}, the following problems are undecidable:

- Is $L(G) \subseteq L\left(G^{\prime}\right)$? $\left(G P_{\subseteq}\right)$
- Is $L(G)=L\left(G^{\prime}\right)$? $\left(G P_{=}\right)$

Undecidable grammar problems (proofs)

Proposition

Deterministic context-free grammars are closed under complement. There is a computable function f such that for each context-free grammar $G, f(G)$ is a context-free grammar with $\overline{L(G)}=L(f(G))$

For a proof see Hopcroft \& Ullman 1979.
to prove:
Given two context-free grammars G, G^{\prime}, the following problems are undecidable:

- Is $L(G) \subseteq L\left(G^{\prime}\right)$? $\left(G P_{\subseteq}\right)$
- Is $L(G)=L\left(G^{\prime}\right)$? $\left(G P_{=}\right)$
- Note that the grammars G_{1} and G_{2} are deterministic.
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ if and only if $L\left(G_{1}\right) \subseteq \overline{L\left(G_{2}\right)}$
$\Rightarrow G P_{\cap, \emptyset} \leq G P_{\subseteq}$, the problem whether $L(G) \subseteq L\left(G^{\prime}\right)$ is undecidable.

Undecidable grammar problems (proofs)

Proposition

Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar $G, f(G)$ is a context-free grammar with $\overline{L(G)}=L(f(G))$

For a proof see Hopcroft \& Ullman 1979.

to prove:

Given two context-free grammars G, G^{\prime}, the following problems are undecidable:

- Is $L(G) \subseteq L\left(G^{\prime}\right)$? $\left(G P_{\subseteq}\right)$
- Is $L(G)=L\left(G^{\prime}\right)$? $\left(G P_{=}\right)$
- Note that the grammars G_{1} and G_{2} are deterministic.
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ if and only if $L\left(G_{1}\right) \subseteq \overline{L\left(G_{2}\right)}$
$\Rightarrow G P_{\cap, \emptyset} \leq G P_{\subseteq}$, the problem whether $L(G) \subseteq L\left(G^{\prime}\right)$ is undecidable.
- $L(G) \subseteq L\left(G^{\prime}\right)$ if and only if $L(G) \cup L\left(G^{\prime}\right)=L\left(G^{\prime}\right)$.
\Rightarrow the problem whether $L(G)=L\left(G^{\prime}\right)$ is undecidable.

Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:

- Is G ambiguous? $\left(G P_{a m b}\right)$
- Is $\overline{L(G)}$ context-free? $\left(G P_{\overline{C F}}\right)$
- Is $L(G)$ regular? $\left(G P_{\text {reg }}\right)$

Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:

- Is G ambiguous? $\left(G P_{a m b}\right)$
- Is $\overline{L(G)}$ context-free? $\left(G P_{\overline{C F}}\right)$
- Is $L(G)$ regular? $\left(G P_{\text {reg }}\right)$
- Let G_{1} and G_{2} be as before. Let G_{3} be the grammar which generates $L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
- The instance of the PCP problem has a solution iff there exists a word $w \in L\left(G_{3}\right)$ which has two derivation trees (one from G_{1} and one from G_{2}).
$\Rightarrow P C P \leq G P_{a m b}$, the problem whether a context-free grammar is ambiguous is undecidable.

Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:

- Is G ambiguous? $\left(G P_{a m b}\right)$
- Is $\overline{L(G)}$ context-free? $\left(G P_{\overline{C F}}\right)$
- Is $L(G)$ regular? $\left(G P_{r e g}\right)$
- Let G_{1} and G_{2} be as before. Let G_{3} be the grammar which generates $L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
- The instance of the PCP problem has a solution iff there exists a word $w \in L\left(G_{3}\right)$ which has two derivation trees (one from G_{1} and one from G_{2}).
$\Rightarrow P C P \leq G P_{a m b}$, the problem whether a context-free grammar is ambiguous is undecidable.
- Remember, G_{1} and G_{2} are deterministic and $f\left(G_{1}\right), f\left(G_{2}\right)$ generate the complement languages. Let G_{4} be the grammar which generates $L\left(G_{4}\right)=L\left(f\left(G_{1}\right)\right) \cup L\left(f\left(G_{2}\right)\right)=\overline{L\left(G_{1}\right)} \cup \overline{L\left(G_{2}\right)}=\overline{L\left(G_{1}\right) \cap L\left(G_{2}\right)}$
- The instance of the PCP problem has a solution iff $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\overline{L\left(G_{4}\right)}$ is not context-free.
$\Rightarrow G P_{\cap, C F} \leq G P_{\overline{C F}}$ The problem whether the complement of a context-free language is context-free is undecidable.

Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:

- Is G ambiguous? $\left(G P_{a m b}\right)$
- Is $\overline{L(G)}$ context-free? $\left(G P_{\overline{C F}}\right)$
- Is $L(G)$ regular? $\left(G P_{r e g}\right)$
- Let G_{1} and G_{2} be as before. Let G_{3} be the grammar which generates $L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
- The instance of the PCP problem has a solution iff there exists a word $w \in L\left(G_{3}\right)$ which has two derivation trees (one from G_{1} and one from G_{2}).
$\Rightarrow P C P \leq G P_{a m b}$, the problem whether a context-free grammar is ambiguous is undecidable.
- Remember, G_{1} and G_{2} are deterministic and $f\left(G_{1}\right), f\left(G_{2}\right)$ generate the complement languages. Let G_{4} be the grammar which generates

$$
L\left(G_{4}\right)=L\left(f\left(G_{1}\right)\right) \cup L\left(f\left(G_{2}\right)\right)=\overline{L\left(G_{1}\right)} \cup \overline{L\left(G_{2}\right)}=\overline{L\left(G_{1}\right) \cap L\left(G_{2}\right)}
$$

- The instance of the PCP problem has a solution iff $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\overline{L\left(G_{4}\right)}$ is not context-free.
$\Rightarrow G P_{\cap, C F} \leq G P_{\overline{C F}}$ The problem whether the complement of a context-free language is context-free is undecidable.
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ iff $L\left(G_{4}\right)=\Sigma^{*}$. Remember: For regular languages it is easy to check whether $L=\Sigma^{*}$.
$\Rightarrow G P_{\cap, \varnothing} \leq G P_{\text {reg }}$ The problem whether a context-free grammar generates a regular language is undecidable.

