Complexity of Natural Languages Mildly-context sensitivity T1 languages

Introduction to Formal Language Theory — day 4

Wiebke Petersen \& Kata Balogh

Heinrich-Heine-Universität
NASSLLI 2014

Outine

(9) Pumping lemma for CF languages
(2) NL and the CF language class
(3) NL Complexity

4 Context sensitive languages
(5) Turing machine

binary trees

Proposition

If T is an arbitrary binary tree with at least 2^{k} leafs, then height $(T) \geq k$.
Proof by induction on k. The proposition is true for $k=0$. Given the proposition is true for some fixed k, let T be a tree with $\geq 2^{k+1}$ leafs. T has two subtrees of which at least one has 2^{k} leafs. Thus the height of T is $\geq 2^{k+1}$.

Corollary

If a context-free grammar is in CNF, then the height of a derivation tree of a word of length $\geq 2^{k}$, then $\operatorname{height}(T)$ is greater than k (note that the last derivation step is always a unary one).

Pumping lemma for context-free languages

Lemma (Pumping Lemma)

For each context-free language L there exists a $n \in \mathbb{N}$ such that for any $z \in L$: if $|z| \geq n$, then z may be written as $z=u v w x y$ with

- $u, v, w, x, y \in T^{*}$,
- $|v w x| \leq p$,
- $v x \neq \epsilon$ and
- $u v^{i} w x^{i} y \in L$ for any $i \geq 0$.

Pumping lemma: proof sketch

Let $k=|N|$ and $n=2^{k}$. Be $z \in L$ with $|z| \geq n$.

Because of $|z| \geq 2^{k}$ there exists a path in the binary part of the derivation tree of z of length $\geq k$.

At least one non-terminal symbol occurs twice on the path. Starting from the bottom of the path, let A be the first non-terminal occurring twice.

Pumping Lemma: proof sketch

$|v w x| \leq n(A$ is chosen such that no non-terminal occurs twice in the trees spanned by the upper of the two A 's) $v x \neq \epsilon$ (a binary rule $A \rightarrow B C$ must have been applied to the upper A).

Pumping Lemma: proof sketch

$u v^{i} w x^{i} y \in L$ for any $i \geq 0$.

Pumping Lemma: application

The language $L\left(a^{k} b^{m} c^{k} d^{m}\right)$ is not context-free

- Assume that $L\left(a^{k} b^{m} c^{k} d^{m}\right)$ is context-free then there is a $n \in \mathbb{N}$ as specified by the Pumping Lemma.
- Choose $z=a^{n} b^{n} c^{n} d^{n}$, and $z=u v w x y$ in accordance with the Pumping Lemma.
- Because of $v w x \leq n$ the string $v w x$ consists either of only a's, of a and b 's, only of b 's, of b and c 's, only of c 's,....
- It follows that the pumped word $u v^{2} w x^{2} y$ cannot be in L.
- That contradicts the assumption that L is context-free.

Closure properties of context-free languages

	Type3	Type2	Type1	Type0
union	+	+	+	+
intersection	+	-	+	+
Complement	+	-	+	-
concatenation	+	+	+	+
Kleene's star	+	+	+	+
intersection with a regular language	+	+	+	+

$$
\text { union: } \begin{aligned}
G & =\left(N_{1} \uplus N_{2} \cup\{S\}, T_{1} \cup T_{2}, S, P\right) \text { with } \\
P & =P_{1} \cup_{\uplus} P_{2} \cup\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\}
\end{aligned}
$$

intersection: $L_{1}=\left\{a^{n} b^{n} a^{k}\right\}, L_{2}=\left\{a^{n} b^{k} a^{k}\right\}$, but $L_{1} \cap L_{2}=\left\{a^{n} b^{n} a^{n}\right\}$
complement: de Morgan
concatenation: $G=\left(N_{1} \uplus N_{2} \cup\{S\}, T_{1} \cup T_{2}, S, P\right)$ with $P=P_{1} \cup_{\uplus} P_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$
Kleene's star: $G=\left(N_{1} \cup\{S\}, T_{1}, S, P\right)$ with $P=P_{1} \cup\left\{S \rightarrow S_{1} S, S \rightarrow \epsilon\right\}$

Are natural languages context-free?

- a long time debate about the context-freeness of natural languages

Chomsky (1957) : "Of course there are languages (in our general sense) that cannot be described in terms of phrase structure, but I do not know whether or not English is itself literally outside the range of such analysis."

- several wrong arguments, e.g.:

Bresnan (1987): : "in many cases the number of a verb agrees with that of a noun phrase at some distance from it ... this type of syntactic dependency can extend as memory or patience permits ... the distant type of agreement ... cannot be adequately described even by context-sensitive phrase-structure rules, for the possible context is not correctly describable as a finite string of phrases."

- right proof techniques: pumping lemma and closure properties
- a non context-free phenomenon: cross-serial dependencies in Schwyzerdütsch (Schieber 1985)

Are natural languages context-free?

- German: nested dependency (subordinate clauses)
(1) er die Kinder dem Hans das Haus streichen helfen ließ. he the children the Hans the house paint help let. 'he he let the children to help Hans to paint the house.'

Are natural languages context-free?

- Schwyzerdütsch: cross-serial dependency
(2) mer d'chind em Hans es huus lönd hälfe aastriiche. we children.acc the Hans.dat the house.acc let help paint. 'that we let the children to help Hans to paint the house.'

(3) *mer d'chind de Hans es huus lönd hälfe aastriiche. we children.acc the Hans.acc the house.acc let help paint.

Proof by Schieber

- Jan säit das mer d'chind em Hans es huus lönd hälfe aastriiche.
- homomorphism f:

$f($ d'chind $)=a$	$f($ em Hans $)=b$	$f($ laa $)=c$
$f($ hlfe $)=d$	$f($ aastriiche $)=y$	$f($ es huus haend wele $)=x$
$f($ Jan sit das mer $)=w$	$f(s)=z$ otherwise	

- $f($ Schwyzerdütsch $) \cap w a^{*} b^{*} x c^{*} d^{*} y=w a^{m} b^{n} x c^{m} d^{n} y$
- CF languages are closed under intersection with regular languages
- wa* $b^{*} x c^{*} d^{*} y$ is regular
- by Pumping Lemma: $w a^{m} b^{n} x c^{m} d^{n} y$ is not regular
- \Rightarrow Schwyzerdütsch is not context-free

Duplication

- duplication (in morphology): Bambara (spoken in Mali)
- wulu 'dog'
wulu-lela 'dog watcher'
wulu-lela-nyinila 'dog watcher hunter'
wulu-o-wulu 'whatever dog'
wulu-lela-o-wulu-lela 'whatever dog watcher' wulu-lela-nyinila-o-wulu-lela-nyinila 'whatever dog watcher hunter'
- structure of the form $x=y y \Rightarrow$ not context-free

Dutch cross dependencies

- cross dependencies in Dutch
(4) dat Jan Piet de kinderen zag helpen zwemmen. that Jan Piet the children saw help swim 'that Jan saw Piet helping the children to swim.'
- no case marking \rightarrow string can be generated by a CFG

- however the linguistic dependencies are not preserved \Rightarrow structure (predicate-argument relations)
- weak generative capacity: preserve the string language
- strong generative capacity: preserve the structure

Mildly context sensitive grammars

- for natural languages context-free grammars are just not 'enough'
- not context-free structures / languages:
(1) $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ (multiple agreement)
(2) $\left\{a^{n} b^{m} c^{n} d^{m} \mid m, n \geq 0\right\}$ (cross-serial dependencies)
(3) $\left\{w w \mid w \in\{a, b\}^{*}\right\}$ (duplication)
- for natural languages we need grammars, that are somewhat richer than context-free grammars, but more restricted than context-sensitive grammars
- \Rightarrow natural languages are almost context-free
- "mildly context sensitive" (Joshi, 1985)
- $R L \subset C F L \subset M C S L \subset C S L \subset R E$

Mildly context sensitive languages

Definition: Mildly context-sensitive language (Joshi, 1985)

1. A set \mathcal{L} of languages is mildly context-sensitive iff
a. \mathcal{L} contains all context-free languages
b. \mathcal{L} can describe cross-serial dependencies: there is an $n \geq 2$ such that $\left\{w^{k} \mid w \in\left(V_{T}\right)^{*}\right\} \in L$ for all $k \geq n$
c. the languages in \mathcal{L} are polynomially parseable, i.e., $L \subset$ PTIME
d. the languages in \mathcal{L} have the constant growth property
2. A formalism F is mildly context-sensitive iff the set $\{L \mid L=L(G)$ for some $G \in F\}$ is mildly context-sensitive.

Mildly context sensitive grammars

- mildly context-sensitive grammar formalisms
- Linear Indexed Grammars (LIGs)
- Head Grammars (HGs)
- Tree Adjoining Grammars (TAGs)
- Multicomponent TAGs (MCTAGs)
- Combinatory Categorial Grammars (CCGs)
- Linear Context-Free Rewriting Systems (LCFRSs)
- TAGs, CCGs, LIGs and HGs are weakly equivalent
- MCTAGs and LCFRSs subsume TAGs, CCGs, LIGs and HGs

Context-sensitive languages

Definition

A grammar (N, T, S, R) is Type1 or context-sensitive iff all rules are of the form:
$\gamma \boldsymbol{A} \delta \rightarrow \gamma \beta \delta$ with $\gamma, \delta, \beta \in(N \cup T)^{*}, \boldsymbol{A} \in N$ and $\beta \neq \epsilon ;$
With the exception that $S \rightarrow \epsilon$ is allowed if S does not occur in any rule's right-hand side.

A language generated by a T1 grammar is said to be a context-sensitive or Type1-language.

- γ en δ can be empty, but β cannot be the empty string; $\beta \neq \epsilon$ (!)
\sim 'non-shrinking' context-sensitive scheme

Example: CS grammar

- consider the language $a^{n} b^{n} c^{n}$
- a context-sensitive grammar generating this language is:
- $G=(T, N, S, R)$ with

$$
\begin{aligned}
T= & \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
N= & \{S, A, B, C, T\} \\
R= & \{S \rightarrow \epsilon, \mathrm{~S} \rightarrow \mathrm{~T}, \\
& \mathrm{T} \rightarrow \mathrm{aBC}, \mathrm{~T} \rightarrow \mathrm{aTBC}, \\
& \left(\text { recursively generating } \mathrm{a}^{n}(B C)^{n}\right) \\
& \mathrm{CB} \rightarrow \mathrm{CX}, \mathrm{CX} \rightarrow \mathrm{BX}, \mathrm{BX} \rightarrow \mathrm{BC}, \\
& (\text { (swapping two non-terminals: } \mathrm{CB} \rightarrow B C) \\
& \mathrm{aB} \rightarrow \mathrm{ab}, \mathrm{bB} \rightarrow \mathrm{bb}, \mathrm{bC} \rightarrow \mathrm{bc}, \mathrm{cC} \rightarrow \mathrm{cc}\} \\
& \left(\text { from } a^{n} B^{n} C^{n} \text { to } a^{n} b^{n} C^{n}\right)
\end{aligned}
$$

- $\mathrm{S} \Rightarrow \mathrm{T} \Rightarrow{ }^{*}$ aaaaBCBCBCBC $\Rightarrow{ }^{*}$ aaaaBCBCBCBC $\Rightarrow{ }^{*}$ aaaaBBCCBCBC $\Rightarrow{ }^{*}$ aaaaBBCBCCBC $\Rightarrow{ }^{*}$ aaaaBBBBCCCC \Rightarrow aaaabBBBCCCC \Rightarrow aaaabbBBCCCC $\Rightarrow{ }^{*}$ aaaabbbbCCCC \Rightarrow aaaabbbbcCCC \Rightarrow aaaabbbbccCC \Rightarrow^{*} aaaabbbbcccc

Turing machine

- unrestricted grammars generate Type 0 languages
- Turing machines recognize (or generate) Type 0 languages

Alan Turing
(1912 - 1952)

Turing machine: an abstract 'computer'

"Computing is normally done by writing certain symbols on paper. We may suppose this paper is divided into squares like a child's arithmetic book. [...]
I think that it is agreed that the two-dimensional character of paper is no essential of computation. I assume then that the computation is carried out on one-dimensional paper, i.e. on tape divided into squares."
[Alan Turing: On computable numbers with an application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society, 2, 1936.]

Turing machine

Definition

A deterministic Turing machine is a tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ with:

- Q is a finite, non-empty set of states
- $\Sigma \subset \Gamma$ is the set of the input symbols
- 「 is the finite, non-empty set of the tape symbols
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the partial transition function with L for left and R for right move.
- $q_{0} \in Q$ is the initial state
- $\square \in \Gamma \backslash \Sigma$ is the blank symbol
- $F \subseteq Q$ is the set of accepting states

Note: the transition function is partial, i.e. for some state tape-symbol pairs $\delta(q, a)$ is undefined.

An image of a Turing machine

...

Start conventions

- The tape of the TM contains the input string. All other tape positions are filled by the blank symbol \square.
- The (read-write) head of the TM is placed above the left-most input symbol.
- The TM is in the start state.

Configurations

A configuration of a TM is a string $\alpha q \beta$, where

- α is the string of symbols to the left of the head starting with the left-most non-blank symbol on the tape
- q is the state the TM is in.
- β is the rest of the string ending with the right-most non-blank symbol on the tape.
- the read-write head is currently scanning the first symbol of β.
$\alpha \beta$ must be finite for any configuration of a TM as every configuration of a TM is reached after a finite number of steps (i.e., the head can only be moved a finite number of positions to the right or to the left from the starting position).

Transitions

...

Transitions

- $\delta(q, a)=\left(q^{\prime}, b, R \mid L\right)$ specifies that if the TM is in state q and reads an a it can change to state q^{\prime}, write b, and move either one position right (R) or left (L).
- For a right-move transition $\delta(q, a)=\left(q^{\prime}, b, R\right)$ we get: $\alpha q a \beta \Rightarrow \alpha b q^{\prime} \beta$.
- For a left-move transition $\delta(q, a)=\left(q^{\prime}, b, L\right)$ we get: $\alpha c q a \beta \Rightarrow \alpha q^{\prime} c b$
\Rightarrow * is used as before for the closure of \Rightarrow

Example: Turing machine for addition

- Take the following Turing machine: $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{1\},\{1\}, q_{0}, \delta,\left\{q_{3}\right\}\right)$
- states: q_{0}, q_{1}, q_{2}
- alphabet and input alphabet: $\{1\}$
- final state: q_{3}
- transitions: $\delta=\left\{\left(q_{0}, 1\right) \rightarrow\left(q_{0}, 1, R\right),\left(q_{0}, \square\right) \rightarrow\left(q_{1}, 1, R\right)\right.$,

$$
\left(q_{1}, 1\right) \rightarrow\left(q_{1}, 1, R\right),\left(q_{1}, \square\right) \rightarrow\left(q_{2}, \square, L\right)
$$

$$
\left.\left(q_{2}, 1\right) \rightarrow\left(q_{3}, \square, R\right)\right\}
$$

Example: Turing machine for addition

Turing machine for subtraction

Acceptance by final state

A turing machine M accepts the language $L(M)$ by final state: $L(M)=\left\{w \mid q_{0} w \Rightarrow^{*} C\right.$ where C is a configuration with a final state $\}$

Acceptance by halting

A turing machine M accepts the language $H(M)$ by halting:
$H(M)=\left\{w \mid q_{0} w \Rightarrow^{*} C\right.$ where C is a configuration without possible moves $\}$

Equivalence of acceptance by finite state and by halting

- If $L=L(M)$, then there exists a TM M' with $L=H\left(M^{\prime}\right)$. (remove all moves from the final state)
- If $L=H(M)$, then there exists a TM M" with $L=L\left(M^{\prime \prime}\right)$. (transition to a new final state from all pairs for which $\delta(\boldsymbol{q}, a)$ is undefined).
Turing machines accept the recursively enumerable languages (RE).

Turing-computable functions

TMs can be seen as acceptors (accepting languages) or as computers (computing functions).

A partial function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is Turing-computable if there exists a TM $\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ such that:

$$
f(w)=v \text { if and only if }\left(\epsilon, q_{0}, w\right) \Rightarrow^{*}\left(\epsilon, q_{f}, f(w)\right) \text { with } q_{f} \in F
$$

Church's thesis

Every effective computation can be carried out by a Turing machine. Everything that is in some intuitive way computable is Turing-computable.

Enumerations

enumerable

A language $L \subseteq \Sigma^{*}$ is enumerable, if $L=\emptyset$ or there exists a total function $f: \mathbb{N} \rightarrow \Sigma^{*}$ such that $L=\{f(n) \mid n \in \mathbb{N}\}$.

recursively enumerable

A language $L \subseteq \Sigma^{*}$ is recursively enumerable, if $L=\emptyset$ or there exists a total computable function $f: \mathbb{N} \rightarrow \Sigma^{*}$ such that $L=\{f(n) \mid n \in \mathbb{N}\}$

Proposition

Every language accepted by a Turing machine is recursively enumerable.

TM extensions

multi-track TMs

If a language L is accepted by a TM with any finite number of tracks, then there is a TM with one tape which accepts L.

A multi-track TM consists of a finite number of tapes, called tracks; the head scans all tapes at the same position and moves on all tapes in simultaneously (analogue to 1 -tape TM with a tape alphabet of vectors).

multi-tape TMs

If a language L is accepted by a TM with any finite number of tapes, then there is a TM with one tape which accepts L.

In a multi-tape TM the head can move independently on all tapes.
A 2-tape TM is simulated by a 4-track TM, where

- the 1st track simulates the tape of the 1st TM.
- the $2 n d$ track simulates the position of the head of the 1 st TM.
- the 3rd track simulates the tape of the 2nd TM.
- the 4th track simulates the position of the head of the 2nd TM.
multi-tape TM \rightarrow multi-track TM

$\left.\ldots$| | | | | | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 2 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \checkmark | | | | | | | |

Further extensions and restrictions of TMs

Extension: nondeterministic TMs

If a language L is accepted by a nondeterministic Turing machine, then there is a deterministic Turing machine which accepts L.

Restrictions of TMs

- Push-down automata with two stacks have the same expressive power as Turing machines.
- Turing machines with semi-bounded tapes (the tape only grows into one direction) have the same expressive power as Turing machines.

Linearly bounded TMs

Turing machines with a bounded tape the length of which is linearly bounded by the length of the input string are weaker than general Turing machines. They accept languages of Type 1.

Closure properties of recursively enumerable languages

Recursively enumerable languages are closed under

- union (Given two TMs M and M^{\prime}. For $H(M) \cup H\left(M^{\prime}\right)$ construct a 2-tape Turing machine which simulates M and M^{\prime} on the two tapes.)
- intersection (Similar construction as for union but with $L(M) \cap L\left(M^{\prime}\right)$)
- concatenation (Given two TMs M and M^{\prime}. For $H(M) \frown H\left(M^{\prime}\right)$ construct a 2-tape nondeterministic TM which guesses the breakpoint of an input string and then simulates on the first tape M on the first part of the string and on the second tape M^{\prime} on the second part.)
- Kleene star (Similar to concatenation)

RE is not closed under complement, as we cannot decide whether a running TM will ever halt.

