
Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Complexity of Natural Languages
Mildly-context sensitivity

T1 languages
Introduction to Formal Language Theory — day 4

Wiebke Petersen & Kata Balogh

Heinrich-Heine-Universität

NASSLLI 2014

Petersen & Balogh (HHU) T1 NASSLLI 2014 1 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Outline

1 Pumping lemma for CF languages

2 NL and the CF language class

3 NL Complexity

4 Context sensitive languages

5 Turing machine

Petersen & Balogh (HHU) T1 NASSLLI 2014 2 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

binary trees

Proposition

If T is an arbitrary binary tree with at least 2k leafs, then height(T) ≥ k.

Proof by induction on k . The proposition is true for k = 0. Given the proposition is true for some
fixed k , let T be a tree with ≥ 2k+1 leafs. T has two subtrees of which at least one has 2k leafs.
Thus the height of T is ≥ 2k+1.

Corollary

If a context-free grammar is in CNF, then the height of a derivation tree of a word of length ≥ 2k ,
then height(T) is greater than k (note that the last derivation step is always a unary one).

Petersen & Balogh (HHU) T1 NASSLLI 2014 3 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Pumping lemma for context-free languages

Lemma (Pumping Lemma)

For each context-free language L there exists a n ∈ N such that for any z ∈ L:
if |z| ≥ n, then z may be written as z = uvwxy with

u, v ,w , x , y ∈ T ∗,
|vwx | ≤ p,
vx 6= ε and
uv iwx iy ∈ L for any i ≥ 0.

Petersen & Balogh (HHU) T1 NASSLLI 2014 4 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Pumping lemma: proof sketch

Let k = |N| and n = 2k . Be z ∈ L with |z| ≥ n.

Because of |z| ≥ 2k there exists a path in the binary part of the derivation tree of z of length ≥ k .

At least one non-terminal symbol occurs twice on the path.
Starting from the bottom of the path, let A be the first non-terminal occurring twice.

Petersen & Balogh (HHU) T1 NASSLLI 2014 5 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Pumping Lemma: proof sketch

|vwx | ≤ n (A is chosen such that no non-terminal occurs twice in the trees
spanned by the upper of the two A’s)
vx 6= ε (a binary rule A→ BC must have been applied to the upper A).

Petersen & Balogh (HHU) T1 NASSLLI 2014 6 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Pumping Lemma: proof sketch

uv iwx iy ∈ L for any i ≥ 0.

Petersen & Balogh (HHU) T1 NASSLLI 2014 7 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Pumping Lemma: application

The language L(ak bmck dm) is not context-free

Assume that L(ak bmck dm) is context-free then there is a n ∈ N as
specified by the Pumping Lemma.
Choose z = anbncndn, and z = uvwxy in accordance with the Pumping
Lemma.
Because of vwx ≤ n the string vwx consists either of only a’s, of a and
b’s, only of b’s, of b and c’s, only of c’s,. . . .
It follows that the pumped word uv2wx2y cannot be in L.
That contradicts the assumption that L is context-free.

Petersen & Balogh (HHU) T1 NASSLLI 2014 8 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Closure properties of context-free languages

Type3 Type2 Type1 Type0
union + + + +
intersection + - + +
complement + - + -
concatenation + + + +
Kleene’s star + + + +
intersection with a regular language + + + +

union: G = (N1] N2 ∪ {S},T1 ∪ T2,S,P) with
P = P1 ∪] P2 ∪ {S → S1,S → S2}

intersection: L1 = {anbnak}, L2 = {anbk ak}, but L1 ∩ L2 = {anbnan}
complement: de Morgan

concatenation: G = (N1] N2 ∪ {S},T1 ∪ T2,S,P) with P = P1 ∪] P2 ∪ {S → S1S2}
Kleene’s star: G = (N1 ∪ {S},T1,S,P) with P = P1 ∪ {S → S1S,S → ε}

Petersen & Balogh (HHU) T1 NASSLLI 2014 9 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Are natural languages context-free?

a long time debate about the context-freeness of natural languages
Chomsky (1957) : “Of course there are languages (in our general sense) that cannot be
described in terms of phrase structure, but I do not know whether or not English is itself
literally outside the range of such analysis.”

several wrong arguments, e.g.:
Bresnan (1987): : “in many cases the number of a verb agrees with that of a noun phrase
at some distance from it ... this type of syntactic dependency can extend as memory or
patience permits ... the distant type of agreement ... cannot be adequately described even
by context-sensitive phrase-structure rules, for the possible context is not correctly
describable as a finite string of phrases."

right proof techniques: pumping lemma and closure properties
a non context-free phenomenon: cross-serial dependencies in
Schwyzerdütsch (Schieber 1985)

Petersen & Balogh (HHU) T1 NASSLLI 2014 10 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Are natural languages context-free?

German: nested dependency (subordinate clauses)

(1) er
he

die
the

Kinder
children

dem
the

Hans
Hans

das
the

Haus
house

streichen
paint

helfen
help

ließ.
let.

‘he he let the children to help Hans to paint the house.’

n1 n2 n3 v3 v2 v1

Petersen & Balogh (HHU) T1 NASSLLI 2014 11 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Are natural languages context-free?

Schwyzerdütsch: cross-serial dependency

(2) mer
we

d’chind
children.acc

em
the

Hans
Hans.dat

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

‘that we let the children to help Hans to paint the house.’

n1 n2 n3 v1 v2 v3

(3) *mer
we

d’chind
children.acc

de
the

Hans
Hans.acc

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

Petersen & Balogh (HHU) T1 NASSLLI 2014 12 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Proof by Schieber

Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.
homomorphism f :

f (d’chind) = a f (em Hans) = b f (laa) = c
f (hlfe) = d f (aastriiche) = y f (es huus haend wele) = x
f (Jan sit das mer) = w f (s) = z otherwise

f (Schwyzerdütsch) ∩ wa∗b∗xc∗d∗y = wambnxcmdny
I CF languages are closed under intersection with regular languages
I wa∗b∗xc∗d∗y is regular
I by Pumping Lemma: wambnxcmdny is not regular

⇒ Schwyzerdütsch is not context-free

Petersen & Balogh (HHU) T1 NASSLLI 2014 13 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Duplication

duplication (in morphology): Bambara (spoken in Mali)
I wulu ‘dog’

wulu-lela ‘dog watcher’
wulu-lela-nyinila ‘dog watcher hunter’
wulu-o-wulu ‘whatever dog’
wulu-lela-o-wulu-lela ‘whatever dog watcher’
wulu-lela-nyinila-o-wulu-lela-nyinila ‘whatever dog watcher hunter’

structure of the form x = yy ⇒ not context-free

Petersen & Balogh (HHU) T1 NASSLLI 2014 14 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Dutch cross dependencies

cross dependencies in Dutch

(4) dat
that

Jan
Jan

Piet
Piet

de
the

kinderen
children

zag
saw

helpen
help

zwemmen.
swim

‘that Jan saw Piet helping the children to swim.’

I no case marking→ string can be generated by a CFG
n1 n2 n3 v3 v2 v1

I however the linguistic dependencies are not preserved⇒ structure
(predicate-argument relations)

I weak generative capacity: preserve the string language
I strong generative capacity: preserve the structure

Petersen & Balogh (HHU) T1 NASSLLI 2014 15 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Mildly context sensitive grammars

for natural languages context-free grammars are just not ‘enough’
I not context-free structures / languages:

(1) {anbncn | n ≥ 0} (multiple agreement)
(2) {anbmcndm | m, n ≥ 0} (cross-serial dependencies)
(3) {ww | w ∈ {a, b}∗} (duplication)

for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive
grammars
⇒ natural languages are almost context-free
“mildly context sensitive" (Joshi, 1985)
RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE

Petersen & Balogh (HHU) T1 NASSLLI 2014 16 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Mildly context sensitive languages

Definition: Mildly context-sensitive language (Joshi, 1985)

1. A set L of languages is mildly context-sensitive iff
a. L contains all context-free languages
b. L can describe cross-serial dependencies: there is an n ≥ 2 such that
{wk | w ∈ (VT)

∗} ∈ L for all k ≥ n
c. the languages in L are polynomially parseable, i.e., L ⊂ PTIME
d. the languages in L have the constant growth property

2. A formalism F is mildly context-sensitive iff the set {L | L = L(G) for some G ∈ F}
is mildly context-sensitive.

Petersen & Balogh (HHU) T1 NASSLLI 2014 17 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Mildly context sensitive grammars

mildly context-sensitive grammar formalisms
I Linear Indexed Grammars (LIGs)
I Head Grammars (HGs)
I Tree Adjoining Grammars (TAGs)
I Multicomponent TAGs (MCTAGs)
I Combinatory Categorial Grammars (CCGs)
I Linear Context-Free Rewriting Systems (LCFRSs)

TAGs, CCGs, LIGs and HGs are weakly equivalent
MCTAGs and LCFRSs subsume TAGs, CCGs, LIGs and HGs

Petersen & Balogh (HHU) T1 NASSLLI 2014 18 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Context-sensitive languages

Definition

A grammar (N,T ,S,R) is Type1 or context-sensitive iff all rules are of the
form:

γAδ → γβδ with γ, δ, β ∈ (N ∪ T)∗,A ∈ N and β 6= ε;

With the exception that S → ε is allowed if S does not occur in any rule’s
right-hand side.

A language generated by a T1 grammar is said to be a context-sensitive or
Type1-language.

γ en δ can be empty, but β cannot be the empty string; β 6= ε (!)
; ‘non-shrinking’ context-sensitive scheme

Petersen & Balogh (HHU) T1 NASSLLI 2014 19 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Example: CS grammar

consider the language anbncn

a context-sensitive grammar generating this language is:
I G = (T ,N,S,R) with

T = {a, b, c}
N = {S,A,B,C,T}
R = {S→ ε, S→ T,

T→ aBC, T→ aTBC,
(recursively generating an(BC)n)
CB→ CX, CX→ BX, BX→ BC,
(swapping two non-terminals: CB → BC)
aB→ ab, bB→ bb, bC→ bc, cC→ cc}
(from anBnCn to anbncn)

I S⇒ T⇒∗ aaaaBCBCBCBC⇒∗ aaaaBCBCBCBC⇒∗ aaaaBBCCBCBC
⇒∗ aaaaBBCBCCBC⇒∗ aaaaBBBBCCCC⇒ aaaabBBBCCCC⇒
aaaabbBBCCCC⇒∗ aaaabbbbCCCC⇒ aaaabbbbcCCC⇒
aaaabbbbccCC⇒∗ aaaabbbbcccc

Petersen & Balogh (HHU) T1 NASSLLI 2014 20 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Turing machine

unrestricted grammars generate Type 0 languages
Turing machines recognize (or generate) Type 0 languages

Alan Turing

(1912 – 1952)

Turing machine: an abstract ‘computer’

“Computing is normally done by writing certain
symbols on paper. We may suppose this paper is
divided into squares like a child’s arithmetic book.
[. . .]
I think that it is agreed that the two-dimensional
character of paper is no essential of computation. I
assume then that the computation is carried out on
one-dimensional paper, i.e. on tape divided into
squares.”

[Alan Turing: On computable numbers with an application to the Entscheidungsproblem. In: Proceedings

of the London Mathematical Society, 2, 1936.]

Petersen & Balogh (HHU) T1 NASSLLI 2014 21 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Turing machine

Definition

A deterministic Turing machine is a tuple (Q,Σ, Γ, δ,q0,2,F) with:
Q is a finite, non-empty set of states
Σ ⊂ Γ is the set of the input symbols
Γ is the finite, non-empty set of the tape symbols
δ : Q × Γ→ Q × Γ×{L,R} is the partial transition function with L for left
and R for right move.
q0 ∈ Q is the initial state
2 ∈ Γ \ Σ is the blank symbol
F ⊆ Q is the set of accepting states

Note: the transition function is partial, i.e. for some state tape-symbol pairs
δ(q,a) is undefined.

Petersen & Balogh (HHU) T1 NASSLLI 2014 22 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

An image of a Turing machine

. . . 1 1 1 1 1 1 . . .1

Start conventions
The tape of the TM contains the input string. All other tape positions are
filled by the blank symbol 2.
The (read-write) head of the TM is placed above the left-most input
symbol.
The TM is in the start state.

Petersen & Balogh (HHU) T1 NASSLLI 2014 23 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Configurations

.1 1 1 1 1 1 1 10 0 0

q3 111q311000111

A configuration of a TM is a string αqβ, where
α is the string of symbols to the left of the head starting with the left-most
non-blank symbol on the tape
q is the state the TM is in.
β is the rest of the string ending with the right-most non-blank symbol on
the tape.
the read-write head is currently scanning the first symbol of β.

αβ must be finite for any configuration of a TM as every configuration of a TM
is reached after a finite number of steps (i.e., the head can only be moved a
finite number of positions to the right or to the left from the starting position).

Petersen & Balogh (HHU) T1 NASSLLI 2014 24 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Transitions

.1 1 1 1 1 1 1 10 0 0

q3 0|q4 111q311000111

1 1 1 1 1 1 10 0 0 0

q4 111q311000111⇒ 1110q41000111

1 1 1 1 1 1 10 0 0 0

q40|q5 1110q41000111

1 1 1 1 1 10 0 0 0 0

q5 1110q41000111⇒ 111q500000111

1 1 1 1 1 10 0 0 0 0

q12|q2 q111100000111

1 1 1 1 10 0 0 0 0

q2 q111100000111⇒ q2221100000111

Transitions

δ(q,a) = (q′,b,R|L) specifies that if the TM is in state q and reads an a it
can change to state q′, write b, and move either one position right (R) or
left (L).
For a right-move transition δ(q,a) = (q′,b,R) we get: αqaβ ⇒ αbq′β.
For a left-move transition δ(q,a) = (q′,b,L) we get: αcqaβ ⇒ αq′cb

⇒∗ is used as before for the closure of⇒

Petersen & Balogh (HHU) T1 NASSLLI 2014 25 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Example: Turing machine for addition

Take the following Turing machine: M = ({q0,q1,q2}, {1}, {1},q0, δ, {q3})
I states: q0, q1, q2
I alphabet and input alphabet: {1}
I final state: q3
I transitions: δ = {(q0, 1)→ (q0, 1,R), (q0,2)→ (q1, 1,R),

(q1, 1)→ (q1, 1,R), (q1,2)→ (q2,2, L),
(q2, 1)→ (q3,2,R)}

Petersen & Balogh (HHU) T1 NASSLLI 2014 26 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Example: Turing machine for addition

.1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q12|q2

1 1 1 1 1 1 1 1 1 1

q2 2|q3

1 1 1 1 1 1 1 1 1

q3q3

1 2
q0 (q0,1,R) (q1,1,R)
q1 (q1,1,R) (q2,2,L)
q2 (q3,2,R)
q3

Petersen & Balogh (HHU) T1 NASSLLI 2014 27 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Turing machine for subtraction

.1 1 1 1 1 1 1 11 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0q0 2|q1

1 1 1

q1 1|q1

1 1 1

q1 1|q1

1 1 1

q1 1|q1

1 1 1

q12|q2

1 1 1 1 1 1 1 0

q20|q3

1 1 1 1 1 1 1 0

q31|q3q31|q3q32|q4q41|q4q41|q4q41|q4q41|q4q41|q4q4 2|q5

1 1 1 1 1 10 0

q5 0|q0q0 1|q0q0 1|q0q0 1|q0q0 1|q0q0 2|q1q1 1|q1q1 1|q1q10|q2q20|q3

1 1 1 1 10 0 0

q31|q3q32|q4q41|q4q41|q4q41|q4q41|q4q4 0|q5q5 0|q0

1 1 1 1 10 0 0 0

q0 1|q0q0 1|q0q0 1|q0q0 2|q1q1 1|q1q1 0|q2q20|q3

1 1 10 0 0 0 0

q32|q4q41|q4q41|q4q40|q4q4 1|q4q4 0|q5

1 10 0 0 0 0 0

q5 1|q0q0 1|q0q0 2|q1q12|q2q2q2

1 2 0
q0 (q0,1,R) (q1,2,R)
q1 (q1,1,R) (q2,0,L) (q2,2,L)
q2 (q3,0,L)
q3 (q3,1,L) (q4,2,L)
q4 (q4,1,L) (q5,2,R) (q5,0,R)
q5 (q0,0,R)

Petersen & Balogh (HHU) T1 NASSLLI 2014 28 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Language accepted by a TM

Acceptance by final state

A turing machine M accepts the language L(M) by final state:
L(M) = {w | q0w ⇒∗ C where C is a configuration with a final state}

Acceptance by halting

A turing machine M accepts the language H(M) by halting:
H(M) = {w | q0w ⇒∗ C where C is a configuration without possible moves}

Equivalence of acceptance by finite state and by halting

If L = L(M), then there exists a TM M’ with L = H(M ′).
(remove all moves from the final state)
If L = H(M), then there exists a TM M” with L = L(M ′′).
(transition to a new final state from all pairs for which δ(q,a) is undefined).

Turing machines accept the recursively enumerable languages (RE).

Petersen & Balogh (HHU) T1 NASSLLI 2014 29 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Turing-computable functions

TMs can be seen as acceptors (accepting languages) or as computers
(computing functions).

A partial function f : Σ∗ → Σ∗ is Turing-computable if there exists a TM
(Q,Σ, Γ, δ,q0,2,F) such that:

f (w) = v if and only if (ε,q0,w)⇒∗ (ε,qf , f (w)) with qf ∈ F .

Church’s thesis
Every effective computation can be carried out by a Turing machine.
Everything that is in some intuitive way computable is Turing-computable.

Petersen & Balogh (HHU) T1 NASSLLI 2014 30 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Enumerations

enumerable

A language L ⊆ Σ∗ is enumerable, if L = ∅ or there exists a total function
f : N→ Σ∗ such that L = {f (n)|n ∈ N}.

recursively enumerable

A language L ⊆ Σ∗ is recursively enumerable, if L = ∅ or there exists a total
computable function f : N→ Σ∗ such that L = {f (n)|n ∈ N}

enumerator
. . . , w14, w13, w12, w11, w10, w9, w8, w7, w6, w5, w4, w3, w2, w1

Proposition

Every language accepted by a Turing machine is recursively enumerable.

Petersen & Balogh (HHU) T1 NASSLLI 2014 31 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

TM extensions

multi-track TMs
If a language L is accepted by a TM with any finite number of tracks, then there is a TM with one
tape which accepts L.

A multi-track TM consists of a finite number of tapes, called tracks; the head scans all tapes at the
same position and moves on all tapes in simultaneously (analogue to 1-tape TM with a tape
alphabet of vectors).

multi-tape TMs
If a language L is accepted by a TM with any finite number of tapes, then there is a TM with one
tape which accepts L.

In a multi-tape TM the head can move independently on all tapes.
A 2-tape TM is simulated by a 4-track TM, where

the 1st track simulates the tape of the 1st TM.

the 2nd track simulates the position of the head of the 1st TM.

the 3rd track simulates the tape of the 2nd TM.

the 4th track simulates the position of the head of the 2nd TM.

Petersen & Balogh (HHU) T1 NASSLLI 2014 32 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

multi-tape TM→ multi-track TM

.1 1 1 10 0 0 0

.1 1 1 1 1 1 10 0 0 0 0 0

1 1 0 0 0 0 1 1
X

1 1 0 0 1 0 1 1 1 0 0 1 0
X

.

Petersen & Balogh (HHU) T1 NASSLLI 2014 33 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Further extensions and restrictions of TMs

Extension: nondeterministic TMs
If a language L is accepted by a nondeterministic Turing machine, then there
is a deterministic Turing machine which accepts L.

Restrictions of TMs
Push-down automata with two stacks have the same expressive power as
Turing machines.
Turing machines with semi-bounded tapes (the tape only grows into one
direction) have the same expressive power as Turing machines.

Linearly bounded TMs

Turing machines with a bounded tape the length of which is linearly bounded
by the length of the input string are weaker than general Turing machines.
They accept languages of Type 1.

Petersen & Balogh (HHU) T1 NASSLLI 2014 34 / 35

Pumping lemma for CF languages NL and the CF language class NL Complexity Context sensitive languages Turing machine

Closure properties of recursively enumerable languages

Recursively enumerable languages are closed under

union (Given two TMs M and M ′. For H(M) ∪ H(M ′) construct a 2-tape
Turing machine which simulates M and M ′ on the two tapes.)
intersection (Similar construction as for union but with L(M) ∩ L(M ′))
concatenation (Given two TMs M and M ′. For H(M) _ H(M ′) construct a
2-tape nondeterministic TM which guesses the breakpoint of an input
string and then simulates on the first tape M on the first part of the string
and on the second tape M ′ on the second part.)
Kleene star (Similar to concatenation)

RE is not closed under complement, as we cannot decide whether a running
TM will ever halt.

Petersen & Balogh (HHU) T1 NASSLLI 2014 35 / 35

	Pumping lemma for CF languages
	

	NL and the CF language class
	NL Complexity
	Context sensitive languages
	Turing machine

