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Equivalence relation

Definition
Let M be a set. A binary Relation R C M x M on M is an equivalence
relation if

Q R is reflexive (Vx € M : xRx)

@ R is symmetric (if xRy, then yRx)

@ R is transitive (if xRy and yRz, then xRz)
An equivalence relation R on M, parts M into disjoint subsets
(equivalence classes) M; (with i € ), where

@ foralli €l and x,y € M;, the relation xRy holds and

@ foralli,je |l withi# jand x € M; and y € M;, the relation xRy

does not hold.

If x € M, [x]r determines the equivalence class, that contains x. The
number of equivalence classes |{[x]g : x € M}| is the index of the
equivalence relation.

v
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Indistinguishability relation

Definition
Let L be a language over the alphabet .. We define the
indistinguishability relation R; over ¥* as follows:
xRy holds iff for all z € ¥* either xz and yz are both in language L
or xz and yz are both not in language L.
If two strings x and y are in relation Ry, we call them indistinguishable
with respect to language L.

Example: a and aa are indistinguishable with respect to the language a*
but they are not indistinguishable with respect to the language {a"b"}.

Lemma
The indistinguishability relation is an equivalence relation. J
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Myhill-Nerode theorem

Proposition

A language L C ¥* is regular iff the index of the indistinguishability
relation Ry is finite.

Proposition (Corollary)

A language L C ¥* is not regular iff the number of chains in ¥*, such that
they are pairwise distinguishable with respect to L, is infinite.

v

Example:

@ The index of R, for L(a(a|b)*c) is 4, thus L is regular.
([¢], [a], [ac], [])

@ The index of Ry for L(a’b* : i > k) is infinite, thus L is not regular.
([a"] for i > 0 are all different)
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Proof of the Myhill-Nerode theorem (1)
(if regular, then finite index)

Let M be a deterministic FSA that accepts the language L. Define a
further equivalence relation Ry over X* as follows: xRyy iff the
automaton M is in the same state ((e, qo, x) F* (x, g, ¢€), (€, g0, ¥) F* (v, q,€))
after processing the strings x and y.

@ Every equivalence class of Ry, is associated with a state in M.

@ Since the number of states is finite, the index of Ry, has to be finite as well.

@ If xRyy holds, then xzRyyz holds for any z € ¥*.

@ If we assume that xRy y holds and z € £*, then xz will be accepted by
automaton M iff yz is also accepted by the automaton.

@ Therefore xz € L holds iff yz € L.

@ Therefore from xRy y follows xR, y.

@ Thus every equivalence class of Ry is a subset of the equivalence class of R;.

@ Since the index of Ry, is finite, the index of R, has to be finite as well.
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Proof of the MyhlII-Nerode theorem (I1)
(if finite index, then regular)

Let L be a regular language. Thus the index of Ry is finite.

Let [x1]R,, [x2]R, ;- - - [xn]r, be the n equivalence classes of R;. Then we
can define a detFSA M, that accepts L as follows:

M, =(Q,%,4,S, F) with:

o Q= {[xlr,,[xlr.--- xR}

o S=[dr, (= [xlr if € € [x]r,)
o F={[xirIxi € L},

b 6([X]RL7 a) = [Xa]RL'

A detFSA with n (= index of R|) states is called a minimal detFSA for
the language L. Every detFSA with n states that accepts the language L,
can be derived from M; by renaming the states.
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detFSA minimization (algorithm)

Given a detFSA M (where all states are accessible from initial state).
© Create a table with all pairs of states g; # q;.

@ Mark all pairs (qj, qj) with g; € F and q; & F (or the other way
around).

© Check for every unmarked pair (g;, g;) and every symbol a €
whether (6(gi, a),0(qj, a)) is marked or not. If it is marked, also mark
(gi, q))-

© Repeat step 3 as long as you can add new marks.

© Merge all unmarked pairs to one state.
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Pumping lemma for regular languages

Lemma (Pumping-Lemma)

If L is a regular language over ¥, then there exists n € N such that every
word z € L with |z| > n can be written as z = uvw such that

o |v|>1

@ |uv|<n

o uv'w € L forany i > 0.

proof sketch:

@ Any regular language is accepted by a deterministic FSA with a finite
number n of states.

o While reading in z with |z| > n the detFSA passes at least one state
q; twice.
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Pumpir mma for CF lan

Pumping lemma for regular languages (cont.

)

Lemma (Pumping-Lemma)

If L is a regular language over ¥, then there exists n € N such that every
word z € L with |z| > n can be written as w = uvw such that

o |v|>1

® |uv|<n

e uv'w € L for any i > 0.

proof sketch:

Let g; be the first state that is passed twice, then |u| < nand |uv| < n
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L={amb™ : m> 0} is not regular

@ Suppose L is regular and n is the natural number associated with L by
the pumping lemma. Let z = a"b" and write z = uvw with |uv| < n
and |v| > 1.

@ |uv| < nimplies that u and v can only consist of a's.

@ The pumping lemma implies that uviw € L for any i > 0, but uvww
has more a's as uvw (remember |v| # ¢).

@ Thus either uvw or uvvw is not an element of L.

@ Contradiction to the assumption that L is regular.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 11 / 42



e theorem Pumping lemma NL C
[e]ele] ]

Closure properties of regular languages

lemma for CF |

A language class is closed under an operation if its application to arbitrary
languages of this class

Type3 | Type2 | Typel | Type0
union + Vv + + +
intersection + - + +
complement + - + -
concatenation + Vv + + +
Kleene's star + v + + +
intersection with a regular language | + + + +

complement: construct complementary DFSA

intersection: implied by de Morgan
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Are natural languages regular?

@ Pinker: Finite State Model (Markov Model / word chain device)
» a model whereby a sentence is produced one word at a time
» each successive word limits the choice of the next word

happy
the/ \ boy ice cream
glrl > eats > {hot dogs
dog candy

@ it was considered plausible until the 1950's
@ problems for modeling natural languages, e.g.:
» long-distance dependencies and sentence embedding
» the FSM cannot handle hierarchical / tree-like structures
» structural ambiguity
> recursion (embedding)
e Chomsky (Syntactic structures, 1957): English is not a regular

language.
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Long distance dependencies and embedding

e if..., then ... / either ..., or ... structures
(a) Either John; is sick or he; is depressed.
(b) Either Mary; knows [that John; thinks that he; is sick] or she; is
depressed.
@ arbitrary (sentence) embedding possible, e.g.
The cheese [that the mouse stole]s was expensive.
The cheese [that the mouse [that the cat caught]s stole]s was expensive.
The cheese [that the mouse [that the cat [that the dog chased]s caught]s
stole]s was expensive.
The cheese [that the mouse [that the cat [that the dog [that Peter bought]s
chased]s caught]s stole]s was expensive.
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Constituency

@ words can be hierachically grouped to bigger units = phrases /
constituents

[Np Felix] [vp slept].

[vp A cat] [vp slept].

[vp A small cat] [vp slept].

[np A small grey cat] [vp slept].

[Np ROSG] [Vp [V admires] [NP Felix] ]

[np Rose] [ve [v admires] [yp an actor] .

[nvp Rose] [ve [v admires] [yp an actor [s who likes Felix] ] ].

v

vV VY vy VY VY
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Structural ambiguity

@ one sentence with two (or more) different syntactic analyses
e two (or more) different phrase structure trees

@ e.g. Sherlock saw the man with the binoculars.

> [s [np Sherlock] [vp [v saw] [vp the man] [pp with the binoculars] ].
> [s [np Sherlock] [vp [v saw] [vp the man [pp with the binoculars] ] ].

@ other different ambiguities:

> lexical ambiguity; e.g. The fisherman went to the bank.
> scope ambiguity; e.g. Every student read a book.
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Natural languages are not regular

@ see, e.g., the example of nested dependency:
» a woman met another woman
» a woman whom another woman hired hired another woman
» a woman whom another woman whom another woman hired hired met
another woman
> ... etc.

@ formal proof using closure under intersection and the pumping lemma
for regular languages

o recall: L1grec N L2 = LrEG

@ we cannot directly apply the Pumping Lemma to English

@ but we can use a common strategy: intersection and homomorphism

@ homomorphism f: f(a woman) = w, f(whom another woman) = x,

f(hired) = y, f(met another woman) = z
» wx*y*z is a regular language; and
> f(English) N wx*y*z = wx"y"z
@ we can apply the Pumping Lemma to wx"y"z
@ = x"y" is not regular = English is not regular
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Context-free language

Definition
A grammar (N, T, S, R) is context-free if all production rules in R are of the form:

A— B withAe NandBe (NUT)"\ {e}

Additionally, the rule S — ¢ is allowed if S does not occur in any rule’s right-hand side.
A language generated by a context-free grammar is said to be context-free.

Proposition

The set of context-free languages is a strict superset of the set of regular languages.

Proof: Each regular language is per definition context-free. L(a"b") is context-free but
not regular (S — aSh, S — ¢).

Note: S — ¢ is only allowed if S does not occur in any rule’s right-hand side, however
the problem can always be eliminated (S —¢,S — T, T — aTh, T — ab)
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Examples of context-free languages

Ly = {wwR:w e {a b}*}
» generated by the grammar G; = ({5}, {a, b}, S, R) with
R={S—¢S—>aSa,S—bSb}
Ly ={a'bl :i>j}
L3 ={w € {a,b}* : more a’s than b's}
Ly = {w € {a, b}* : number of a's equals number of b's}
» generated by the grammar G, = ({3, b}, {S, A, B}, S, R) with
R={S—aB,S — bA, A — aS, B — bS, A — bAA, B — aBB,
A—aB—b}
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Ambiguous grammars and ambiguous languages

Definition
Given a context-free grammar G: A derivation which always replaces the
leftmost nonterminal symbol is called left-derivation

Definition
A context-free grammar G is ambiguous iff there exists a w € L(G) with
more than one left-derivation, S —* w.

Definition
A context-free language L is ambiguous iff each context-free grammar G
with L(G) = L is ambiguous.

Recall: there is a one-to-one correspondence between left-derivations and
derivation trees.
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Example of an ambiguous grammar

e G=(N,T,S,R) with
N = {D, N, NP, P, PP, PN, V, VP, S},
T = {the, man, binoculars, sherlock, with, saw},

S —- NP VP, VP — V NP,VP — V NP PP,

NP — PN,NP — D N,NP — D N PP,PP — P NP,
V — saw, PN — sherlock,N — man,

N — binoculars,D — the, P — with

@ left-derivations:

» S = NP VP = PN VP = Sherlock VP = Sherlock V NP = Sherlock
saw NP = ...

» S = NP VP = PN VP = Sherlock VP = Sherlock V NP PP =
Sherlock saw NP PP = ...
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sher/ock NP
/\ /\
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o
the man with D/\N

the binoculars
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Push-down automaton

@ we saw, that the regular language a*b* can be accepted by an FSA

o take now the language a"b" — we cannot create an FSA that accepts
a"b", since the ‘loops’ do not ‘remember’ how many a's are read at a
given moment =- we need some kind of “memory”

e Push-down Automaton (PDA)

» a PDA is essentially an FSA augmented with an auxiliary tape or stack
on which it can read, write, and erase symbols

» ‘last in — first out” (LIFO) system

> the stack can be seen as a kind of “memory”

@ context-free languages are accepted by Push-down Automata
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Example PDAs

@ a PDA for language a"b"
e aPDAM=(Q,X,T,J, qo, F) with
Q = {q0, q1} (set of states)
Y ={a, b} (input alphabet)
I = {A} (stack alphabet)
go (initial state)
F ={qo,q1} (set of final states)
§= {(Qm a, 6) - (CIo, A)7 (qO, b7 A) - (qlv 6)’ (qlv b7A) - (Ch,é)}

(a,€,A) (b, A€)

start
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Push-down automaton

Definition

A nondeterministic push-down automaton is a 6-tuple
(Q,X,T,9,qo, F) with:

a finite, nonempty set of states Q

an alphabet ¥ with QNYX = ()

a stack alphabet T with X NI =0

a transition relation § : (Q x X* x '*) x (Q x I'*)
an initial state qo € Q and

a set of final states F C Q.

©0 0000

nondeterministic and deterministic PDAs are not equivalent!
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Push-down automaton

transition rules of the form (g;, x, &) — (q«, )

the transitions include not only change of state but also operations on
the stack: pop and push

transition rules from state g; to state g», while reading a, and
» pop A from the stack: (qg1,a,A) = (g2, €)
» push B to the stack: (g1, a,€) — (g2, B)
> pop A and push B: (q1,a,A) — (g2, B)
» no stack operation: (g1, a,¢) — (go,€)

according to the definition A and B can also be strings over '

a PDA accepts an input string iff

> the entire input string has been read
» the PDA is in a final (accepting) state
> the stack is empty
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Example PDAs

R

@ a PDA for language ww
e a PDAM=(Q,%,T,J,qo, F) with

Q@ = {490, g1} (set of states)

Y = {a, b} (input alphabet)

I'={A, B} (stack alphabet)

go (initial state)

F ={qo, g1} (set of final states)

6= {(q07 a, 6) - (qu A)7 (q07 b, A) - (qla 6)’ (qla va) - (qlv 6)}

(a,¢, A) (a, A, €)
(a,A¢€)

(b,B.e)
(b,€, B) (b, B,¢)
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Chomsky Normal Form

Definition
A grammar is in Chomsky Normal Form (CNF) if all production rules
are of the form

Q@ A—a

Q@ A— BC

with A,B,C € T and a € ¥ (and if necessary S — € in which case S
may not occur in any right-hand side of a rule).

Proposition
Each context-free language is generated by a grammar in CNF.

Proposition

No node in a derivation tree of a grammar in CNF has more than two
daughters.

v
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Chomsky Normal Form

@ Each context-free language is generated by a grammar in CNF.

@ Given a context-free grammar G with € ¢ L(G)

3 steps
© Eliminate complex terminal rules.
@ Eliminate chain rules.

© Eliminate A — B1B,...B, (n > 2) rules.
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CNF: eliminate complex terminal rules

Aim: Terminals only occur in rules of type A — a

@ Introduce a new non-terminal X, for each terminal a occurring in a
complex terminal rule.

@ Replace a by X, in all complex terminal rules.

© For each X; add a rule X; — a.

S — ABA|B
S — ABA|B A= X,A|C|a
A — aA|C|a = B — X,B|b
B — bB|b C—A
C—A X, — a

Xp— b
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CNF: eliminate chain rules

Aim: No rules of the form A — B

@ For each circle A; — Ay, ..., Ax_1 — Ak, Ax — Aj replace in all
rules each A; by a new non-terminal A’ and delete all A" — A’-rules.

@ Remove stepwise all rules A — B and add for each B — 5 a rule

A— [
S — ABA|B P
S — A'BA'| X,B|b
A= X,A|C|a , ,
A — XA |a
B — X,B|b =
B — XpB|b
C—A
X;— a
X;— a
Xp — b
Xb—>b
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CNF: A= BB, ... B, (n>2)

Aim: not more than two non-terminals in one rule's right-hand side
@ For each rule of the form A — B1B5 ... B, introduce a new
non-terminal Xg, B,.
@ Remove the rule and add two new rules:

A— 31X52_“B"
XB;..‘B,, — Bz . Bn

S — A'Xgw|XyB|b
S — A'BA'|X,B|b s | X8l

, , Al — X A |a
A = X,A|a
N B — X,B|b
B — X,B|b
X; — a
X; — a
Xp — b
Xb—>b ,
XBA/—>BA
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binary trees

SN

Proposition J

If T is an arbitrary binary tree with at least 2 leafs, then height(T) > k.

Proof by induction on k. The proposition is true for k = 0. Given the proposition is true
for some fixed k, let T be a tree with > 2“*! leafs. T has two subtrees of which at least
one has 2¥ leafs. Thus the height of T is > 2¢+1.

Corollary

If a context-free grammar is in CNF, then the height of a derivation tree of a word of
length > 2%, then height(T) is greater than k (note that the last derivation step is
always a unary one).
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Pumping lemma for context-free languages

Lemma (Pumping Lemma)
For each context-free language L there exists a n € N such that for any
z € L: if|z| > n, then z may be written as z = uvwxy with

o u,v,w,x,y € T",

o |vwx| < p,

® vx # € and

e uv'wx'y € L forany i > 0.
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Let k = |N| and n = 2. Be z € L with |z| > n.

S

Because of |z| > 2 there exists a path in the binary part of the derivation tree of z of
length > k.

At least one non-terminal symbol occurs twice on the path.
Starting from the bottom of the path, let A be the first non-terminal occurring twice.
Petersen & Balogh (HHU) Formal Language Theory
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Pumping Lemma: proof sketch

|[vwx| < n (A is chosen such that no non-terminal occurs twice in the trees
spanned by the upper of the two A's)
vx # € (a binary rule A — BC must have been applied to the upper A).
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s
A
A
u v A X y
v A X w
W X 7 y

uviwxiy € L for any i > 0.
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Pumping Lemma: application

The language L(a*b™ckd™) is not context-free
o Assume that L(a¥b™ckd™) is context-free then there is a n € N as
specified by the Pumping Lemma.

@ Choose z = a"b"c"d", and z = uvwxy in accordance with the
Pumping Lemma.

@ Because of vwx < n the string vwx consists either of only a's, of a
and b’s, only of b's, of b and c's, only of c’s,. . ..

o It follows that the pumped word uv?wx?y cannot be in L.

@ That contradicts the assumption that L is context-free.
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Closure properties of context-free languages

Type3 | Type2 | Typel | Type0
union + + i i
intersection + - + +
complement + - + -
concatenation + + + +
Kleene's star + + + 4
intersection with a regular language | + + + +
union: G = (Ny W N, U{S}, T1 U Ty, S, P) with

P =Py Uy PQU{5—>51,5—>52}
intersection: L; = {a"b"ak}, L, = {a"b¥a*}, but Ly N Ly, = {a"b"a"}
complement: de Morgan

concatenation: G = (Ny W N, U{S}, Ty U Ty, S, P) with
P=P Uy PU {5 — 5152}

Kleene's star: G = (N, U{S}, T1,S,P) with P= P, U{S — 55,5 — €}
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Given: grammars G = (N,%,S,P), G' = (N, x,S',P"), and a word
wex*

word problem Is w derivable from G 7

emptiness problem Does G generate a nonempty language?

equivalence problem Do G and G’ generate the same language

(L(G) = L(G))?
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Type3 | Type2 | Typel | TypeO
word problem D D D u
emptiness problem D D U U
equivalence problem D U U U

D: decidable; U: undecidable
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