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Equivalence relation

Definition
Let M be a set. A binary Relation R ⊆ M ×M on M is an equivalence
relation if

1 R is reflexive (∀x ∈ M : xRx)
2 R is symmetric (if xRy, then yRx)
3 R is transitive (if xRy and yRz, then xRz)

An equivalence relation R on M, parts M into disjoint subsets
(equivalence classes) Mi (with i ∈ I), where

1 for all i ∈ I and x , y ∈ Mi , the relation xRy holds and
2 for all i , j ∈ I with i 6= j and x ∈ Mi and y ∈ Mj , the relation xRy

does not hold.
If x ∈ M, [x ]R determines the equivalence class, that contains x. The
number of equivalence classes |{[x ]R : x ∈ M}| is the index of the
equivalence relation.
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Indistinguishability relation

Definition
Let L be a language over the alphabet Σ. We define the
indistinguishability relation RL over Σ∗ as follows:

xRLy holds iff for all z ∈ Σ∗ either xz and yz are both in language L
or xz and yz are both not in language L.

If two strings x and y are in relation RL, we call them indistinguishable
with respect to language L.

Example: a and aa are indistinguishable with respect to the language a∗
but they are not indistinguishable with respect to the language {anbn}.

Lemma
The indistinguishability relation is an equivalence relation.
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Myhill-Nerode theorem

Proposition
A language L ⊆ Σ∗ is regular iff the index of the indistinguishability
relation RL is finite.

Proposition (Corollary)
A language L ⊆ Σ∗ is not regular iff the number of chains in Σ∗, such that
they are pairwise distinguishable with respect to L, is infinite.

Example:
1 The index of RL for L(a(a|b)∗c) is 4, thus L is regular.

([ε], [a], [ac], [b])
2 The index of RL for L(aibk : i ≥ k) is infinite, thus L is not regular.

([ai ] for i ≥ 0 are all different)

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 5 / 42



Myhill-Nerode theorem Pumping lemma NL Complexity Context-free languages Pumping lemma for CF languages

Proof of the Myhill-Nerode theorem (I)
(if regular, then finite index)

Let M be a deterministic FSA that accepts the language L. Define a
further equivalence relation RM over Σ∗ as follows: xRMy iff the
automaton M is in the same state ((ε, q0, x) `∗ (x , q, ε), (ε, q0, y) `∗ (y , q, ε))
after processing the strings x and y .

Every equivalence class of RM is associated with a state in M.
Since the number of states is finite, the index of RM has to be finite as well.
If xRMy holds, then xzRMyz holds for any z ∈ Σ∗.
If we assume that xRMy holds and z ∈ Σ∗, then xz will be accepted by
automaton M iff yz is also accepted by the automaton.
Therefore xz ∈ L holds iff yz ∈ L.
Therefore from xRMy follows xRLy .
Thus every equivalence class of RM is a subset of the equivalence class of RL.
Since the index of RM is finite, the index of RL has to be finite as well.
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Proof of the Myhill-Nerode theorem (II)
(if finite index, then regular)

Let L be a regular language. Thus the index of RL is finite.
Let [x1]RL , [x2]RL , . . . [xn]RL be the n equivalence classes of RL. Then we
can define a detFSA ML that accepts L as follows:
ML = (Q,Σ, δ,S,F ) with:

Q = {[x1]RL , [x2]RL , . . . [xn]RL},
S = [ε]RL (= [xi ]RL if ε ∈ [xi ]RL),
F = {[xi ]RL |xi ∈ L},
δ([x ]RL , a) = [xa]RL .

A detFSA with n (= index of RL) states is called a minimal detFSA for
the language L. Every detFSA with n states that accepts the language L,
can be derived from ML by renaming the states.
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detFSA minimization (algorithm)

Given a detFSA M (where all states are accessible from initial state).
1 Create a table with all pairs of states qi 6= qj .
2 Mark all pairs (qi , qj) with qi ∈ F and qj 6∈ F (or the other way

around).
3 Check for every unmarked pair (qi , qj) and every symbol a ∈ Σ

whether (δ(qi , a), δ(qj , a)) is marked or not. If it is marked, also mark
(qi , qj).

4 Repeat step 3 as long as you can add new marks.
5 Merge all unmarked pairs to one state.
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Pumping lemma for regular languages

Lemma (Pumping-Lemma)
If L is a regular language over Σ, then there exists n ∈ N such that every
word z ∈ L with |z | ≥ n can be written as z = uvw such that

|v | ≥ 1
|uv | ≤ n
uv iw ∈ L for any i ≥ 0.

proof sketch:
Any regular language is accepted by a deterministic FSA with a finite
number n of states.
While reading in z with |z | ≥ n the detFSA passes at least one state
qj twice.
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Pumping lemma for regular languages (cont.)

Lemma (Pumping-Lemma)
If L is a regular language over Σ, then there exists n ∈ N such that every
word z ∈ L with |z | ≥ n can be written as w = uvw such that

|v | ≥ 1
|uv | ≤ n
uv iw ∈ L for any i ≥ 0.

proof sketch:

q0 qj = qk qm
u

v

w

Let qj be the first state that is passed twice, then |u| < n and |uv | ≤ n
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L = {ambm : m ≥ 0} is not regular

Suppose L is regular and n is the natural number associated with L by
the pumping lemma. Let z = anbn and write z = uvw with |uv | ≤ n
and |v | ≥ 1.
|uv | ≤ n implies that u and v can only consist of a’s.
The pumping lemma implies that uv iw ∈ L for any i ≥ 0, but uvvw
has more a’s as uvw (remember |v | 6= ε).
Thus either uvw or uvvw is not an element of L.
Contradiction to the assumption that L is regular.
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Closure properties of regular languages

A language class is closed under an operation if its application to arbitrary
languages of this class

Type3 Type2 Type1 Type0
union + X + + +
intersection + - + +
complement + - + -
concatenation + X + + +
Kleene’s star + X + + +
intersection with a regular language + + + +

complement: construct complementary DFSA

intersection: implied by de Morgan
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Are natural languages regular?

Pinker: Finite State Model (Markov Model / word chain device)
I a model whereby a sentence is produced one word at a time
I each successive word limits the choice of the next word

it was considered plausible until the 1950’s
problems for modeling natural languages, e.g.:

I long-distance dependencies and sentence embedding
I the FSM cannot handle hierarchical / tree-like structures
I structural ambiguity
I recursion (embedding)

Chomsky (Syntactic structures, 1957): English is not a regular
language.
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Long distance dependencies and embedding

if ..., then ... / either ..., or ... structures
(a) Either Johni is sick or hei is depressed.
(b) Either Maryi knows [that Johnj thinks that hej is sick] or shei is

depressed.
arbitrary (sentence) embedding possible, e.g.

The cheese [that the mouse stole]S was expensive.
The cheese [that the mouse [that the cat caught]S stole]S was expensive.
The cheese [that the mouse [that the cat [that the dog chased]S caught]S
stole]S was expensive.
The cheese [that the mouse [that the cat [that the dog [that Peter bought]S
chased]S caught]S stole]S was expensive.
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Constituency

words can be hierachically grouped to bigger units ⇒ phrases /
constituents

I [NP Felix] [VP slept].
I [NP A cat] [VP slept].
I [NP A small cat] [VP slept].
I [NP A small grey cat] [VP slept].
I [NP Rose] [VP [V admires] [NP Felix] ].
I [NP Rose] [VP [V admires] [NP an actor] ].
I [NP Rose] [VP [V admires] [NP an actor [S who likes Felix] ] ].
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Structural ambiguity

one sentence with two (or more) different syntactic analyses
two (or more) different phrase structure trees
e.g. Sherlock saw the man with the binoculars.

I [S [NP Sherlock] [VP [V saw] [NP the man] [PP with the binoculars] ].
I [S [NP Sherlock] [VP [V saw] [NP the man [PP with the binoculars] ] ].

other different ambiguities:
I lexical ambiguity; e.g. The fisherman went to the bank.
I scope ambiguity; e.g. Every student read a book.
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Natural languages are not regular

see, e.g., the example of nested dependency:
I a woman met another woman
I a woman whom another woman hired hired another woman
I a woman whom another woman whom another woman hired hired met

another woman
I ... etc.

formal proof using closure under intersection and the pumping lemma
for regular languages
recall: L1REG ∩ L2REG = LREG
we cannot directly apply the Pumping Lemma to English
but we can use a common strategy: intersection and homomorphism
homomorphism f : f (a woman) = w , f (whom another woman) = x ,
f (hired) = y , f (met another woman) = z

I wx∗y∗z is a regular language; and
I f(English) ∩ wx∗y∗z = wxnynz

we can apply the Pumping Lemma to wxnynz
⇒ xnyn is not regular ⇒ English is not regular
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Context-free language

Definition
A grammar (N,T , S,R) is context-free if all production rules in R are of the form:

A→ β with A ∈ N and β ∈ (N ∪ T )∗ \ {ε}

Additionally, the rule S → ε is allowed if S does not occur in any rule’s right-hand side.
A language generated by a context-free grammar is said to be context-free.

Proposition
The set of context-free languages is a strict superset of the set of regular languages.

Proof: Each regular language is per definition context-free. L(anbn) is context-free but
not regular (S → aSb, S → ε).
Note: S → ε is only allowed if S does not occur in any rule’s right-hand side, however
the problem can always be eliminated (S → ε, S → T ,T → aTb,T → ab)
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Examples of context-free languages

L1 = {wwR : w ∈ {a, b}∗}
I generated by the grammar G1 = ({S}, {a, b}, S,R) with

R = {S → ε, S → aSa, S → bSb }
L2 = {aibj : i ≥ j}
L3 = {w ∈ {a, b}∗ : more a′s than b′s}
L4 = {w ∈ {a, b}∗ : number of a′s equals number of b′s}

I generated by the grammar G4 = ({a, b}, {S,A,B}, S,R) with
R = {S → aB, S → bA, A → aS, B → bS, A → bAA, B → aBB,

A → a, B → b }
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Ambiguous grammars and ambiguous languages

Definition
Given a context-free grammar G: A derivation which always replaces the
leftmost nonterminal symbol is called left-derivation

Definition
A context-free grammar G is ambiguous iff there exists a w ∈ L(G) with
more than one left-derivation, S →∗ w.

Definition
A context-free language L is ambiguous iff each context-free grammar G
with L(G) = L is ambiguous.

Recall: there is a one-to-one correspondence between left-derivations and
derivation trees.
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Example of an ambiguous grammar

G = (N,T , S,R) with
N = {D, N, NP, P, PP, PN, V, VP, S},
T = {the, man, binoculars, sherlock, with, saw},

R =


S→ NP VP,VP→ V NP,VP→ V NP PP,
NP→ PN,NP→ D N,NP→ D N PP,PP→ P NP,
V→ saw,PN→ sherlock,N→ man,
N→ binoculars,D→ the,P→ with


left-derivations:

I S ⇒ NP VP ⇒ PN VP ⇒ Sherlock VP ⇒ Sherlock V NP ⇒ Sherlock
saw NP ⇒ ...

I S ⇒ NP VP ⇒ PN VP ⇒ Sherlock VP ⇒ Sherlock V NP PP ⇒
Sherlock saw NP PP ⇒ ...
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Example of an ambiguous grammar
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Example of an ambiguous grammar
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Push-down automaton

we saw, that the regular language a∗b∗ can be accepted by an FSA

q0start q1

a

b

b

take now the language anbn → we cannot create an FSA that accepts
anbn, since the ‘loops’ do not ‘remember’ how many a’s are read at a
given moment ⇒ we need some kind of “memory”
Push-down Automaton (PDA)

I a PDA is essentially an FSA augmented with an auxiliary tape or stack
on which it can read, write, and erase symbols

I ‘last in – first out’ (LIFO) system
I the stack can be seen as a kind of “memory”

context-free languages are accepted by Push-down Automata
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Example PDAs

a PDA for language anbn

a PDA M = 〈Q,Σ, Γ, δ, q0,F 〉 with
Q = {q0, q1} (set of states)
Σ = {a, b} (input alphabet)
Γ = {A} (stack alphabet)
q0 (initial state)
F = {q0, q1} (set of final states)
δ = {(q0, a, ε)→ (q0,A), (q0, b,A)→ (q1, ε), (q1, b,A)→ (q1, ε)}

q0start q1

(a, ε,A)

(b,A, ε)

(b,A, ε)
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Push-down automaton

Definition
A nondeterministic push-down automaton is a 6-tuple
(Q,Σ, Γ, δ, q0,F ) with:

1 a finite, nonempty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅
3 a stack alphabet Γ with Σ ∩ Γ = ∅
4 a transition relation δ : (Q × Σ∗ × Γ∗)× (Q × Γ∗)

5 an initial state q0 ∈ Q and
6 a set of final states F ⊆ Q.

nondeterministic and deterministic PDAs are not equivalent!
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Push-down automaton

transition rules of the form (qi , x , α)→ (qk , β)

the transitions include not only change of state but also operations on
the stack: pop and push
transition rules from state q1 to state q2, while reading a, and

I pop A from the stack: (q1, a,A)→ (q2, ε)
I push B to the stack: (q1, a, ε)→ (q2,B)
I pop A and push B: (q1, a,A)→ (q2,B)
I no stack operation: (q1, a, ε)→ (q2, ε)

according to the definition A and B can also be strings over Γ

a PDA accepts an input string iff
I the entire input string has been read
I the PDA is in a final (accepting) state
I the stack is empty

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 27 / 42



Myhill-Nerode theorem Pumping lemma NL Complexity Context-free languages Pumping lemma for CF languages

Example PDAs

a PDA for language wwR

a PDA M = (Q,Σ, Γ, δ, q0,F ) with
Q = {q0, q1} (set of states)
Σ = {a, b} (input alphabet)
Γ = {A,B} (stack alphabet)
q0 (initial state)
F = {q0, q1} (set of final states)
δ = {(q0, a, ε)→ (q0,A), (q0, b,A)→ (q1, ε), (q1, b,A)→ (q1, ε)}

q0start q1

(a, ε,A)

(b, ε,B)

(a,A, ε)

(b,B, ε)

(a,A, ε)

(b,B, ε)
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Chomsky Normal Form

Definition
A grammar is in Chomsky Normal Form (CNF) if all production rules
are of the form

1 A→ a
2 A→ BC

with A,B,C ∈ T and a ∈ Σ (and if necessary S → ε in which case S
may not occur in any right-hand side of a rule).

Proposition
Each context-free language is generated by a grammar in CNF.

Proposition
No node in a derivation tree of a grammar in CNF has more than two
daughters.
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Chomsky Normal Form

Each context-free language is generated by a grammar in CNF.
Given a context-free grammar G with ε 6∈ L(G)

3 steps
1 Eliminate complex terminal rules.
2 Eliminate chain rules.
3 Eliminate A→ B1B2 . . .Bn (n > 2) rules.
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CNF: eliminate complex terminal rules

Aim: Terminals only occur in rules of type A→ a
1 Introduce a new non-terminal Xa for each terminal a occurring in a

complex terminal rule.
2 Replace a by Xa in all complex terminal rules.
3 For each Xa add a rule Xa → a.

S → ABA|B
A→ aA|C |a
B → bB|b
C → A

⇒

S → ABA|B
A→ XaA|C |a
B → XbB|b
C → A
Xa → a
Xb → b
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CNF: eliminate chain rules

Aim: No rules of the form A→ B
For each circle A1 → A2, . . . , Ak−1 → Ak , Ak → A1 replace in all
rules each Ai by a new non-terminal A′ and delete all A′ → A′-rules.
Remove stepwise all rules A→ B and add for each B → β a rule
A→ β

S → ABA|B
A→ XaA|C |a
B → XbB|b
C → A
Xa → a
Xb → b

⇒

S → A′BA′|XbB|b
A′ → XaA′|a
B → XbB|b
Xa → a
Xb → b
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CNF: A→ B1B2 . . .Bn (n > 2)

Aim: not more than two non-terminals in one rule’s right-hand side
For each rule of the form A→ B1B2 . . .Bn introduce a new
non-terminal XB2...Bn .
Remove the rule and add two new rules:

I A→ B1XB2...Bn
I XB2...Bn → B2 . . .Bn

S → A′BA′|XbB|b
A′ → XaA′|a
B → XbB|b
Xa → a
Xb → b

⇒

S → A′XBA′ |XbB|b
A′ → XaA′|a
B → XbB|b
Xa → a
Xb → b

XBA′ → BA′
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binary trees

Proposition
If T is an arbitrary binary tree with at least 2k leafs, then height(T ) ≥ k.

Proof by induction on k. The proposition is true for k = 0. Given the proposition is true
for some fixed k, let T be a tree with ≥ 2k+1 leafs. T has two subtrees of which at least
one has 2k leafs. Thus the height of T is ≥ 2k+1.

Corollary
If a context-free grammar is in CNF, then the height of a derivation tree of a word of
length ≥ 2k , then height(T ) is greater than k (note that the last derivation step is
always a unary one).
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Pumping lemma for context-free languages

Lemma (Pumping Lemma)
For each context-free language L there exists a n ∈ N such that for any
z ∈ L: if |z | ≥ n, then z may be written as z = uvwxy with

u, v ,w , x , y ∈ T ∗,
|vwx | ≤ p,
vx 6= ε and
uv iwx iy ∈ L for any i ≥ 0.
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Pumping lemma: proof sketch

Let k = |N| and n = 2k . Be z ∈ L with |z| ≥ n.

Because of |z| ≥ 2k there exists a path in the binary part of the derivation tree of z of
length ≥ k.

At least one non-terminal symbol occurs twice on the path.
Starting from the bottom of the path, let A be the first non-terminal occurring twice.
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Pumping Lemma: proof sketch

|vwx | ≤ n (A is chosen such that no non-terminal occurs twice in the trees
spanned by the upper of the two A’s)
vx 6= ε (a binary rule A→ BC must have been applied to the upper A).
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Pumping Lemma: proof sketch

uv iwx iy ∈ L for any i ≥ 0.
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Pumping Lemma: application

The language L(akbmckdm) is not context-free
Assume that L(akbmckdm) is context-free then there is a n ∈ N as
specified by the Pumping Lemma.
Choose z = anbncndn, and z = uvwxy in accordance with the
Pumping Lemma.
Because of vwx ≤ n the string vwx consists either of only a’s, of a
and b’s, only of b’s, of b and c’s, only of c’s,. . . .
It follows that the pumped word uv2wx2y cannot be in L.
That contradicts the assumption that L is context-free.
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Closure properties of context-free languages

Type3 Type2 Type1 Type0
union + + + +
intersection + - + +
complement + - + -
concatenation + + + +
Kleene’s star + + + +
intersection with a regular language + + + +

union: G = (N1 ] N2 ∪ {S},T1 ∪ T2, S,P) with
P = P1 ∪] P2 ∪ {S → S1, S → S2}

intersection: L1 = {anbnak}, L2 = {anbkak}, but L1 ∩ L2 = {anbnan}

complement: de Morgan

concatenation: G = (N1 ] N2 ∪ {S},T1 ∪ T2, S,P) with
P = P1 ∪] P2 ∪ {S → S1S2}

Kleene’s star: G = (N1 ∪ {S},T1, S,P) with P = P1 ∪ {S → S1S,S → ε}
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decision problems

Given: grammars G = (N,Σ, S,P), G ′ = (N ′,Σ,S ′,P ′), and a word
w ∈ Σ∗

word problem Is w derivable from G ?
emptiness problem Does G generate a nonempty language?
equivalence problem Do G and G ′ generate the same language

(L(G) = L(G ′))?
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Results for the decision problems

Type3 Type2 Type1 Type0
word problem D D D U
emptiness problem D D U U
equivalence problem D U U U

D: decidable; U: undecidable
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