Introduction to Formal Language Theory — day 3 Context-free languages

Wiebke Petersen & Kata Balogh

(Heinrich-Heine-Universität Düsseldorf)

NASSLLI 2014 University of Maryland, College Park

Myhill-Nerode theorem	Pumping lemma	NL Complexity 00000	Pumping lemma for CF languages
Outline			

- Myhill-Nerode theorem
- 2 Pumping lemma
- 3 NL Complexity
- 4 Context-free languages
- 5 Pumping lemma for CF languages

Myhill-Nerode theorem	Pumping lemma	NL Complexity	Pumping lemma for CF languages
Equivalence rela	ntion		

Definition

Let M be a set. A binary Relation $R \subseteq M \times M$ on M is an equivalence relation if

- R is reflexive ($\forall x \in M : xRx$)
- R is symmetric (if xRy, then yRx)
- **③** *R* is transitive (if xRy and yRz, then xRz)

An equivalence relation R on M, parts M into disjoint subsets (equivalence classes) M_i (with $i \in I$), where

- **(**) for all $i \in I$ and $x, y \in M_i$, the relation xRy holds and
- **②** for all $i, j \in I$ with $i \neq j$ and $x \in M_i$ and $y \in M_j$, the relation *x*Ry does not hold.

If $x \in M$, $[x]_R$ determines the equivalence class, that contains x. The number of equivalence classes $|\{[x]_R : x \in M\}|$ is the **index** of the equivalence relation.

Myhill-Nerode theorem ○●○○○○	Pumping lemma	NL Complexity	Pumping lemma for CF languages
Indistinguishabi	ility relation		

Definition

Let L be a language over the alphabet Σ . We define the **indistinguishability relation** R_L over Σ^* as follows:

 xR_Ly holds iff for all $z \in \Sigma^*$ either xz and yz are both in language L or xz and yz are both not in language L.

If two strings x and y are in relation R_L , we call them **indistinguishable** with respect to language L.

Example: *a* and *aa* are indistinguishable with respect to the language a^* but they are not indistinguishable with respect to the language $\{a^n b^n\}$.

Lemma

The indistinguishability relation is an equivalence relation.

Myhill-Nerode theorem	Pumping lemma	NL Complexity 00000	Pumping lemma for CF languages
Myhill-Nerode t	heorem		

Proposition

A language $L \subseteq \Sigma^*$ is regular iff the index of the indistinguishability relation R_L is finite.

Proposition (Corollary)

A language $L \subseteq \Sigma^*$ is not regular iff the number of chains in Σ^* , such that they are pairwise distinguishable with respect to L, is infinite.

Example:

- The index of R_L for L(a(a|b)*c) is 4, thus L is regular. ([\earline], [a], [ac], [b])
- ② The index of R_L for $L(a^i b^k : i \ge k)$ is infinite, thus L is not regular. ($[a^i]$ for $i \ge 0$ are all different)

Let M be a deterministic FSA that accepts the language L. Define a further equivalence relation R_M over Σ^* as follows: xR_My iff the automaton M is in the same state $((\epsilon, q_0, x) \vdash^* (x, q, \epsilon), (\epsilon, q_0, y) \vdash^* (y, q, \epsilon))$ after processing the strings x and y.

- Every equivalence class of R_M is associated with a state in M.
- Since the number of states is finite, the index of R_M has to be finite as well.
- If xR_My holds, then xzR_Myz holds for any $z \in \Sigma^*$.
- If we assume that xR_My holds and $z \in \Sigma^*$, then xz will be accepted by automaton M iff yz is also accepted by the automaton.
- Therefore $xz \in L$ holds iff $yz \in L$.
- Therefore from xR_My follows xR_Ly .
- Thus every equivalence class of R_M is a subset of the equivalence class of R_L .
- Since the index of R_M is finite, the index of R_L has to be finite as well.

Let *L* be a regular language. Thus the index of R_L is finite. Let $[x_1]_{\mathcal{D}}$ [x_1]_{\mathcal{D}} be the *n* equivalence classes of R_L

Let $[x_1]_{R_L}, [x_2]_{R_L}, \dots, [x_n]_{R_L}$ be the *n* equivalence classes of R_L . Then we can define a detFSA M_L that accepts *L* as follows:

 $M_L = (Q, \Sigma, \delta, S, F)$ with:

•
$$Q = \{ [x_1]_{R_L}, [x_2]_{R_L}, \dots [x_n]_{R_L} \},$$

•
$$S = [\epsilon]_{R_L}$$
 (= $[x_i]_{R_L}$ if $\epsilon \in [x_i]_{R_L}$),

•
$$F = \{ [x_i]_{R_L} | x_i \in L \},$$

•
$$\delta([x]_{R_L}, a) = [xa]_{R_L}$$
.

A detFSA with n (= index of R_L) states is called a **minimal detFSA** for the language L. Every detFSA with n states that accepts the language L, can be derived from M_L by renaming the states.

Given a detFSA M (where all states are accessible from initial state).

- Create a table with all pairs of states $q_i \neq q_j$.
- **2** Mark all pairs (q_i, q_j) with $q_i \in F$ and $q_j \notin F$ (or the other way around).
- Otheck for every unmarked pair (q_i, q_j) and every symbol a ∈ Σ whether (δ(q_i, a), δ(q_j, a)) is marked or not. If it is marked, also mark (q_i, q_j).
- Repeat step 3 as long as you can add new marks.
- Merge all unmarked pairs to one state.

Lemma (Pumping-Lemma)

If L is a regular language over Σ , then there exists $n \in \mathbb{N}$ such that every word $z \in L$ with $|z| \ge n$ can be written as z = uvw such that

• $|v| \geq 1$

•
$$|uv| \leq n$$

•
$$uv^i w \in L$$
 for any $i \ge 0$.

proof sketch:

- Any regular language is accepted by a deterministic FSA with a finite number *n* of states.
- While reading in z with $|z| \ge n$ the detFSA passes at least one state q_j twice.

 Myhill-Nerode theorem
 Pumping lemma
 NL Complexity
 Context-free languages
 Pumping lemma for CF languages

 000000
 0000
 00000
 000000000
 000000000

 Pumping lemma for regular languages (cont.)

Lemma (Pumping-Lemma)

If L is a regular language over Σ , then there exists $n \in \mathbb{N}$ such that every word $z \in L$ with $|z| \ge n$ can be written as w = uvw such that

- $|v| \geq 1$
- $|uv| \leq n$
- $uv^i w \in L$ for any $i \ge 0$.

proof sketch:

Let q_j be the first state that is passed twice, then |u| < n and $|uv| \le n$

Petersen & Balogh (HHU)

- Suppose L is regular and n is the natural number associated with L by the pumping lemma. Let z = aⁿbⁿ and write z = uvw with |uv| ≤ n and |v| ≥ 1.
- $|uv| \le n$ implies that u and v can only consist of a's.
- The pumping lemma implies that uvⁱw ∈ L for any i ≥ 0, but uvvw has more a's as uvw (remember |v| ≠ ε).
- Thus either *uvw* or *uvvw* is not an element of *L*.
- Contradiction to the assumption that *L* is regular.

Myhill-Nerode theorem	Pumping lemma 000●	NL Complexity 00000	Pumping lemma for CF languages
Closure propert	ies of regula	r languages	

A language class is closed under an operation if its application to arbitrary languages of this class

	Type3	Type2	Type1	Type0
union	$+\checkmark$	+	+	+
intersection	+	-	+	+
complement	+	-	+	-
concatenation	$+\checkmark$	+	+	+
Kleene's star	$+\checkmark$	+	+	+
intersection with a regular language	+	+	+	+

complement: construct complementary DFSA

intersection: implied by de Morgan

- Pinker: Finite State Model (Markov Model / word chain device)
 - a model whereby a sentence is produced one word at a time
 - each successive word limits the choice of the next word

- it was considered plausible until the 1950's
- problems for modeling natural languages, e.g.:
 - long-distance dependencies and sentence embedding
 - the FSM cannot handle hierarchical / tree-like structures
 - structural ambiguity
 - recursion (embedding)
- Chomsky (*Syntactic structures*, 1957): English is not a regular language.

• if ..., then ... / either ..., or ... structures

- (a) Either John; is sick or he; is depressed.
- (b) Either Mary_i knows [that John_j thinks that he_j is sick] or she_i is depressed.

• arbitrary (sentence) embedding possible, e.g.

The cheese [that the mouse stole] $_S$ was expensive.

The cheese [that the mouse [that the cat caught]_S stole]_S was expensive.

The cheese [that the mouse [that the cat [that the dog chased]_S caught]_S stole]_S was expensive.

The cheese [that the mouse [that the cat [that the dog [that Peter bought]_S chased]_S caught]_S stole]_S was expensive.

Myhill-Nerode theorem	Pumping lemma	NL Complexity	Pumping lemma for CF languages
Constituency			

- $\bullet\,$ words can be hierachically grouped to bigger units $\Rightarrow\,$ phrases / constituents
 - ► [_{NP} Felix] [_{VP} slept].
 - [NP A cat] [VP slept].
 - [NP A small cat] [VP slept].
 - [NP A small grey cat] [VP slept].
 - [$_{NP}$ Rose] [$_{VP}$ [$_{V}$ admires] [$_{NP}$ Felix]].
 - [$_{NP}$ Rose] [$_{VP}$ [$_{V}$ admires] [$_{NP}$ an actor]].
 - [$_{NP}$ Rose] [$_{VP}$ [$_{V}$ admires] [$_{NP}$ an actor [$_{S}$ who likes Felix]]].

Myhill-Nerode theorem	Pumping lemma	NL Complexity 000●0	Pumping lemma for CF languages
Structural amb	iguity		

- one sentence with two (or more) different syntactic analyses
- two (or more) different phrase structure trees
- e.g. Sherlock saw the man with the binoculars.
 - [$_{S}$ [$_{NP}$ Sherlock] [$_{VP}$ [$_{V}$ saw] [$_{NP}$ the man] [$_{PP}$ with the binoculars]].
 - [$_{S}$ [$_{NP}$ Sherlock] [$_{VP}$ [$_{V}$ saw] [$_{NP}$ the man [$_{PP}$ with the binoculars]]].
- other different ambiguities:
 - lexical ambiguity; e.g. The fisherman went to the bank.
 - scope ambiguity; e.g. Every student read a book.

Myhill-Nerode theorem	Pumping lemma	NL Complexity 0000●	Pumping lemma for CF languages
Natural languag	ges are not r	egular	

- see, e.g., the example of nested dependency:
 - a woman met another woman
 - a woman whom another woman hired hired another woman
 - a woman whom another woman whom another woman hired hired met another woman
 - ... etc.
- formal proof using closure under intersection and the pumping lemma for regular languages
- recall: $L1_{REG} \cap L2_{REG} = L_{REG}$
- we cannot directly apply the Pumping Lemma to English
- but we can use a common strategy: intersection and homomorphism
- homomorphism f: f(a woman) = w, f(whom another woman) = x,
 - f(hired) = y, f(met another woman) = z
 - wx*y*z is a regular language; and
 - $f(English) \cap wx^*y^*z = wx^ny^nz$
- we can apply the Pumping Lemma to wx^ny^nz
- $\Rightarrow x^n y^n$ is not regular \Rightarrow English is not regular

Myhill-Nerode theorem	Pumping lemma	NL Complexity 00000	Context-free languages	Pumping lemma for CF languages
Context-free la	nguage			

Definition

A grammar (N, T, S, R) is context-free if all production rules in R are of the form:

 $A \rightarrow \beta$ with $A \in N$ and $\beta \in (N \cup T)^* \setminus \{\epsilon\}$

Additionally, the rule $S \rightarrow \epsilon$ is allowed if S does not occur in any rule's right-hand side. A language generated by a context-free grammar is said to be context-free.

Proposition

The set of context-free languages is a strict superset of the set of regular languages.

Proof: Each regular language is per definition context-free. $L(a^n b^n)$ is context-free but not regular $(S \to aSb, S \to \epsilon)$.

Note: $S \to \epsilon$ is only allowed if *S* does not occur in any rule's right-hand side, however the problem can always be eliminated $(S \to \epsilon, S \to T, T \to aTb, T \to ab)$

Definition

Given a context-free grammar G: A derivation which always replaces the leftmost nonterminal symbol is called **left-derivation**

Definition

A context-free grammar G is **ambiguous** iff there exists a $w \in L(G)$ with more than one left-derivation, $S \rightarrow^* w$.

Definition

A context-free language L is **ambiguous** iff each context-free grammar G with L(G) = L is ambiguous.

Recall: there is a one-to-one correspondence between left-derivations and derivation trees.

•
$$G = (N, T, S, R)$$
 with
 $N = \{D, N, NP, P, PP, PN, V, VP, S\},$
 $T = \{the, man, binoculars, sherlock, with, saw\},$
 $R = \begin{cases} S \rightarrow NP \ VP, VP \rightarrow V \ NP, VP \rightarrow V \ NP \ PP, \\ NP \rightarrow PN, NP \rightarrow D \ N, NP \rightarrow D \ N \ PP, PP \rightarrow P \ NP, \\ V \rightarrow saw, PN \rightarrow sherlock, N \rightarrow man, \\ N \rightarrow binoculars \ D \rightarrow the \ P \rightarrow with \end{cases}$

Ieft-derivations:

- ▶ S ⇒ NP VP ⇒ PN VP ⇒ Sherlock VP ⇒ Sherlock V NP ⇒ Sherlock saw NP ⇒ ...
- S ⇒ NP VP ⇒ PN VP ⇒ Sherlock VP ⇒ Sherlock V NP PP ⇒
 Sherlock saw NP PP ⇒ ...

Context-free languages

• we saw, that the regular language a^*b^* can be accepted by an FSA

• take now the language $a^n b^n \rightarrow$ we cannot create an FSA that accepts $a^n b^n$, since the 'loops' do not 'remember' how many a's are read at a given moment \Rightarrow we need some kind of "memory"

• Push-down Automaton (PDA)

- a PDA is essentially an FSA augmented with an *auxiliary tape* or *stack* on which it can read, write, and erase symbols
- 'last in first out' (LIFO) system
- the stack can be seen as a kind of "memory"
- context-free languages are accepted by Push-down Automata

• a PDA for language
$$a^n b^n$$

• a PDA $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ with
 $Q = \{q_0, q_1\}$ (set of states)
 $\Sigma = \{a, b\}$ (input alphabet)
 $\Gamma = \{A\}$ (stack alphabet)
 q_0 (initial state)
 $F = \{q_0, q_1\}$ (set of final states)
 $\delta = \{(q_0, a, \epsilon) \rightarrow (q_0, A), (q_0, b, A) \rightarrow (q_1, \epsilon), (q_1, b, A) \rightarrow (q_1, \epsilon)\}$

Myhill-Nerode theorem	Pumping lemma	NL Complexity 00000	Context-free languages	Pumping lemma for CF languages
Push-down aut	omaton			

Definition

A nondeterministic push-down automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ with:

- **1** a finite, nonempty set of states Q
- **2** an alphabet Σ with $Q \cap \Sigma = \emptyset$
- $\textbf{ 3 a stack alphabet } \Gamma \text{ with } \Sigma \cap \Gamma = \emptyset$
- a transition relation $\delta : (Q \times \Sigma^* \times \Gamma^*) \times (Q \times \Gamma^*)$
- **(a)** an initial state $q_0 \in Q$ and
- a set of final states $F \subseteq Q$.

• nondeterministic and deterministic PDAs are not equivalent!

- transition rules of the form $(q_i, x, \alpha) \rightarrow (q_k, \beta)$
- the transitions include not only change of state but also operations on the stack: *pop and push*
- transition rules from state q_1 to state q_2 , while reading a, and
 - ▶ pop *A* from the stack: $(q_1, a, A) \rightarrow (q_2, \epsilon)$
 - ▶ push *B* to the stack: $(q_1, a, \epsilon) \rightarrow (q_2, B)$
 - ▶ pop A and push B: $(q_1, a, A) \rightarrow (q_2, B)$
 - ▶ no stack operation: $(q_1, a, \epsilon) \rightarrow (q_2, \epsilon)$
- according to the definition A and B can also be strings over Γ
- a PDA accepts an input string iff
 - the entire input string has been read
 - the PDA is in a final (accepting) state
 - the stack is empty

• a PDA for language ww^A
• a PDA
$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$
 with
 $Q = \{q_0, q_1\}$ (set of states)
 $\Sigma = \{a, b\}$ (input alphabet)
 $\Gamma = \{A, B\}$ (stack alphabet)
 q_0 (initial state)
 $F = \{q_0, q_1\}$ (set of final states)
 $\delta = \{(q_0, a, \epsilon) \rightarrow (q_0, A), (q_0, b, A) \rightarrow (q_1, \epsilon), (q_1, b, A) \rightarrow (q_1, \epsilon)\}$

R

.

Myhill-Nerode theorem	Pumping lemma	NL Complexity	Context-free languages	Pumping lemma for CF languages
Chomsky Norm	al Form			

Definition

A grammar is in **Chomsky Normal Form (CNF)** if all production rules are of the form

- $\bigcirc A \to BC$

with $A, B, C \in T$ and $a \in \Sigma$ (and if necessary $S \to \epsilon$ in which case S may not occur in any right-hand side of a rule).

Proposition

Each context-free language is generated by a grammar in CNF.

Proposition

No node in a derivation tree of a grammar in CNF has more than two daughters.

Petersen & Balogh (HHU)

- Each context-free language is generated by a grammar in CNF.
- Given a context-free grammar G with $e \notin L(G)$

3 steps

- Eliminate complex terminal rules.
- 2 Eliminate chain rules.
- Solution Eliminate $A \rightarrow B_1 B_2 \dots B_n$ (n > 2) rules.

Aim: Terminals only occur in rules of type $A \rightarrow a$

- Introduce a new non-terminal X_a for each terminal *a* occurring in a complex terminal rule.
- 2 Replace a by X_a in all complex terminal rules.
- **③** For each X_a add a rule $X_a \rightarrow a$.

$$\begin{array}{cccc} S \rightarrow ABA|B & & & & \\ S \rightarrow ABA|B & & & & & \\ A \rightarrow aA|C|a & \Rightarrow & & & & \\ B \rightarrow bB|b & & & & C \rightarrow A \\ C \rightarrow A & & & & & \\ X_a \rightarrow a & & & \\ X_b \rightarrow b \end{array}$$

5 -A -R -

Aim: No rules of the form $A \rightarrow B$

- For each circle $A_1 \rightarrow A_2, \ldots, A_{k-1} \rightarrow A_k, A_k \rightarrow A_1$ replace in all rules each A_i by a new non-terminal A' and delete all $A' \rightarrow A'$ -rules.
- Remove stepwise all rules $A \to B$ and add for each $B \to \beta$ a rule $A \to \beta$

$$\begin{array}{lll} S \rightarrow ABA|B & S \rightarrow A'BA'|X_bB|b \\ A \rightarrow X_aA|C|a & A' \rightarrow X_aA'|a \\ B \rightarrow X_bB|b & \Rightarrow & B \rightarrow X_bB|b \\ C \rightarrow A & & X_a \rightarrow a \\ X_a \rightarrow a & & X_b \rightarrow b \end{array}$$

Aim: not more than two non-terminals in one rule's right-hand side

- For each rule of the form $A \rightarrow B_1 B_2 \dots B_n$ introduce a new non-terminal $X_{B_2 \dots B_n}$.
- Remove the rule and add two new rules:

$$A o B_1 X_{B_2 \dots B_n}$$

 $X_{B_2 \dots B_n} o B_2 \dots B_n$

$$S
ightarrow A'BA'|X_bB|b$$

 $A'
ightarrow X_aA'|a$
 $B
ightarrow X_bB|b$
 $X_a
ightarrow a$
 $X_b
ightarrow b$

 $egin{aligned} S &
ightarrow A' X_{BA'} | X_b B | b \ A' &
ightarrow X_a A' | a \ B &
ightarrow X_b B | b \ X_a &
ightarrow a \ X_b &
ightarrow b \ X_{BA'} &
ightarrow B A' \end{aligned}$

 \Rightarrow

Proposition

If T is an arbitrary binary tree with at least 2^k leafs, then height(T) $\geq k$.

Proof by induction on k. The proposition is true for k = 0. Given the proposition is true for some fixed k, let T be a tree with $\geq 2^{k+1}$ leafs. T has two subtrees of which at least one has 2^k leafs. Thus the height of T is $\geq 2^{k+1}$.

Corollary

If a context-free grammar is in CNF, then the height of a derivation tree of a word of length $\geq 2^k$, then height(T) is greater than k (note that the last derivation step is always a unary one).

Petersen & Balogh (HHU)

Lemma (Pumping Lemma)

For each context-free language L there exists a $n \in \mathbb{N}$ such that for any $z \in L$: if $|z| \ge n$, then z may be written as z = uvwxy with

- $u, v, w, x, y \in T^*$,
- $|vwx| \leq p$,
- $vx \neq \epsilon$ and
- $uv^i wx^i y \in L$ for any $i \ge 0$.

Because of $|z| \ge 2^k$ there exists a path in the binary part of the derivation tree of z of length $\ge k$.

At least one non-terminal symbol occurs twice on the path.

Starting from the bottom of the path, let A be the first non-terminal occurring twice.

Petersen & Balogh (HHU)

Formal Language Theory

 $|vwx| \le n$ (A is chosen such that no non-terminal occurs twice in the trees spanned by the upper of the two A's) $vx \ne \epsilon$ (a binary rule $A \rightarrow BC$ must have been applied to the upper A).

 $uv^i wx^i y \in L$ for any $i \ge 0$.

The language $L(a^k b^m c^k d^m)$ is not context-free

- Assume that $L(a^k b^m c^k d^m)$ is context-free then there is a $n \in \mathbb{N}$ as specified by the Pumping Lemma.
- Choose $z = a^n b^n c^n d^n$, and z = uvwxy in accordance with the Pumping Lemma.
- Because of vwx ≤ n the string vwx consists either of only a's, of a and b's, only of b's, of b and c's, only of c's,....
- It follows that the pumped word uv^2wx^2y cannot be in L.
- That contradicts the assumption that *L* is context-free.

 Myhill-Nerode theorem
 Pumping lemma
 NL Complexity
 Context-free languages
 Pumping lemma for CF languages

 000000
 00000
 00000
 00000●00

Closure properties of context-free languages

	Type3	Type2	Type1	Type0
union	+	+	+	+
intersection	+	-	+	+
complement	+	-	+	-
concatenation	+	+	+	+
Kleene's star	+	+	+	+
intersection with a regular language	+	+	+	+

union: $G = (N_1 \uplus N_2 \cup \{S\}, T_1 \cup T_2, S, P)$ with $P = P_1 \cup_{\uplus} P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

intersection: $L_1 = \{a^n b^n a^k\}, L_2 = \{a^n b^k a^k\}, \text{ but } L_1 \cap L_2 = \{a^n b^n a^n\}$

complement: de Morgan

concatenation: $G = (N_1 \uplus N_2 \cup \{S\}, T_1 \cup T_2, S, P)$ with $P = P_1 \cup_{\uplus} P_2 \cup \{S \rightarrow S_1S_2\}$

Kleene's star: $G = (N_1 \cup \{S\}, T_1, S, P)$ with $P = P_1 \cup \{S \rightarrow S_1S, S \rightarrow \epsilon\}$

Myhill-Nerode theorem	Pumping lemma	NL Complexity 00000	Pumping lemma for CF languages
decision proble	ms		

Given: grammars $G = (N, \Sigma, S, P)$, $G' = (N', \Sigma, S', P')$, and a word $w \in \Sigma^*$

word problem Is w derivable from G ? emptiness problem Does G generate a nonempty language? equivalence problem Do G and G' generate the same language (L(G) = L(G'))?
 Myhill-Nerode theorem
 Pumping lemma
 NL Complexity
 Context-free languages
 Pumping lemma for CF languages

 00000
 0000
 0000
 0000
 00000000

	Type3	Type2	Type1	Type0	
word problem	D	D	D	U	
emptiness problem	D	D	U	U	
equivalence problem	D	U	U	U	
De desidables II. un desidable					

D: decidable; U: undecidable