Introduction to Formal Language Theory — day 3
 Context-free languages

Wiebke Petersen \& Kata Balogh

(Heinrich-Heine-Universität Düsseldorf)

NASSLLI 2014
University of Maryland, College Park

Outline

(1) Myhill-Nerode theorem
(2) Pumping lemma
(3) NL Complexity

4 Context-free languages
(5) Pumping lemma for CF languages

Equivalence relation

Definition

Let M be a set. A binary Relation $R \subseteq M \times M$ on M is an equivalence relation if
(1) R is reflexive $(\forall x \in M: x R x)$
(2) R is symmetric (if $x R y$, then $y R x$)
(3) R is transitive (if $x R y$ and $y R z$, then $x R z$)

An equivalence relation R on M, parts M into disjoint subsets (equivalence classes) M_{i} (with $i \in I$), where
(1) for all $i \in I$ and $x, y \in M_{i}$, the relation $x R y$ holds and
(2) for all $i, j \in I$ with $i \neq j$ and $x \in M_{i}$ and $y \in M_{j}$, the relation $x R y$ does not hold.
If $x \in M,[x]_{R}$ determines the equivalence class, that contains x. The number of equivalence classes $\left|\left\{[x]_{R}: x \in M\right\}\right|$ is the index of the equivalence relation.

Indistinguishability relation

Definition

Let L be a language over the alphabet Σ. We define the indistinguishability relation R_{L} over Σ^{*} as follows: $x R_{L y}$ holds iff for all $z \in \Sigma^{*}$ either $x z$ and $y z$ are both in language L or $x z$ and $y z$ are both not in language L.
If two strings x and y are in relation R_{L}, we call them indistinguishable with respect to language L.

Example: a and aa are indistinguishable with respect to the language a^{*} but they are not indistinguishable with respect to the language $\left\{a^{n} b^{n}\right\}$.

Lemma

The indistinguishability relation is an equivalence relation.

Myhill-Nerode theorem

Proposition

A language $L \subseteq \Sigma^{*}$ is regular iff the index of the indistinguishability relation R_{L} is finite.

Proposition (Corollary)

A language $L \subseteq \Sigma^{*}$ is not regular iff the number of chains in Σ^{*}, such that they are pairwise distinguishable with respect to L, is infinite.

Example:

(1) The index of R_{L} for $L\left(a(a \mid b)^{*} c\right)$ is 4, thus L is regular. ([$\epsilon],[a],[a c],[b]$)
(2) The index of R_{L} for $L\left(a^{i} b^{k}: i \geq k\right)$ is infinite, thus L is not regular. ([ai] for $i \geq 0$ are all different)

Proof of the Myhill-Nerode theorem (I)

 (if regular, then finite index)Let M be a deterministic FSA that accepts the language L. Define a further equivalence relation R_{M} over Σ^{*} as follows: $x R_{M y}$ iff the automaton M is in the same state $\left(\left(\epsilon, q_{0}, x\right) \vdash^{*}(x, q, \epsilon),\left(\epsilon, q_{0}, y\right) \vdash^{*}(y, q, \epsilon)\right)$ after processing the strings x and y.

- Every equivalence class of R_{M} is associated with a state in M.
- Since the number of states is finite, the index of R_{M} has to be finite as well.
- If $x R_{M} y$ holds, then $x z R_{M} y z$ holds for any $z \in \Sigma^{*}$.
- If we assume that $x R_{M} y$ holds and $z \in \Sigma^{*}$, then $x z$ will be accepted by automaton M iff $y z$ is also accepted by the automaton.
- Therefore $x z \in L$ holds iff $y z \in L$.
- Therefore from $x R_{M y}$ follows $x R_{L y}$.
- Thus every equivalence class of R_{M} is a subset of the equivalence class of R_{L}.
- Since the index of R_{M} is finite, the index of R_{L} has to be finite as well.

Proof of the Myhill-Nerode theorem (II)

 (if finite index, then regular)Let L be a regular language. Thus the index of R_{L} is finite.
Let $\left[x_{1}\right]_{R_{L}},\left[x_{2}\right]_{R_{L}}, \ldots\left[x_{n}\right]_{R_{L}}$ be the n equivalence classes of R_{L}. Then we can define a detFSA M_{L} that accepts L as follows:
$M_{L}=(Q, \Sigma, \delta, S, F)$ with:

- $Q=\left\{\left[x_{1}\right]_{R_{L}},\left[x_{2}\right]_{R_{L}}, \ldots\left[x_{n}\right]_{R_{L}}\right\}$,
- $S=[\epsilon]_{R_{L}} \quad\left(=\left[x_{i}\right]_{R_{L}}\right.$ if $\left.\epsilon \in\left[x_{i}\right]_{R_{L}}\right)$,
- $F=\left\{\left[x_{i}\right]_{R_{L}} \mid x_{i} \in L\right\}$,
- $\delta\left([x]_{R_{L}}, a\right)=[x a]_{R_{L}}$.

A detFSA with $n\left(=\right.$ index of $\left.R_{L}\right)$ states is called a minimal detFSA for the language L. Every detFSA with n states that accepts the language L, can be derived from M_{L} by renaming the states.

detFSA minimization (algorithm)

Given a detFSA M (where all states are accessible from initial state).
(1) Create a table with all pairs of states $q_{i} \neq q_{j}$.
(2) Mark all pairs $\left(q_{i}, q_{j}\right)$ with $q_{i} \in F$ and $q_{j} \notin F$ (or the other way around).
(3) Check for every unmarked pair $\left(q_{i}, q_{j}\right)$ and every symbol $a \in \Sigma$ whether $\left(\delta\left(q_{i}, a\right), \delta\left(q_{j}, a\right)\right)$ is marked or not. If it is marked, also mark $\left(q_{i}, q_{j}\right)$.
(1) Repeat step 3 as long as you can add new marks.
(5) Merge all unmarked pairs to one state.

Pumping lemma for regular languages

Lemma (Pumping-Lemma)

If L is a regular language over Σ, then there exists $n \in \mathbb{N}$ such that every word $z \in L$ with $|z| \geq n$ can be written as $z=u v w$ such that

- $|v| \geq 1$
- $|u v| \leq n$
- $u v^{i} w \in L$ for any $i \geq 0$.
proof sketch:
- Any regular language is accepted by a deterministic FSA with a finite number n of states.
- While reading in z with $|z| \geq n$ the detFSA passes at least one state q_{j} twice.

Pumping lemma for regular languages (cont.)

Lemma (Pumping-Lemma)

If L is a regular language over Σ, then there exists $n \in \mathbb{N}$ such that every word $z \in L$ with $|z| \geq n$ can be written as $w=u v w$ such that

- $|v| \geq 1$
- $|u v| \leq n$
- $u v^{i} w \in L$ for any $i \geq 0$.
proof sketch:

Let q_{j} be the first state that is passed twice, then $|u|<n$ and $|u v| \leq n$

$L=\left\{a^{m} b^{m}: m \geq 0\right\}$ is not regular

- Suppose L is regular and n is the natural number associated with L by the pumping lemma. Let $z=a^{n} b^{n}$ and write $z=u v w$ with $|u v| \leq n$ and $|v| \geq 1$.
- $|u v| \leq n$ implies that u and v can only consist of a 's.
- The pumping lemma implies that $u v^{i} w \in L$ for any $i \geq 0$, but $u v v w$ has more a's as $u v w$ (remember $|v| \neq \epsilon$).
- Thus either $u v w$ or $u v v w$ is not an element of L.
- Contradiction to the assumption that L is regular.

Closure properties of regular languages

A language class is closed under an operation if its application to arbitrary languages of this class

	Type3	Type2	Type1	Type0
union	$+\checkmark$	+	+	+
intersection	+	-	+	+
complement	+	-	+	-
concatenation	$+\checkmark$	+	+	+
Kleene's star	$+\checkmark$	+	+	+
intersection with a regular language	+	+	+	+

complement: construct complementary DFSA
intersection: implied by de Morgan

Are natural languages regular?

- Pinker: Finite State Model (Markov Model / word chain device)
- a model whereby a sentence is produced one word at a time
- each successive word limits the choice of the next word

- it was considered plausible until the 1950's
- problems for modeling natural languages, e.g.:
- long-distance dependencies and sentence embedding
- the FSM cannot handle hierarchical / tree-like structures
- structural ambiguity
- recursion (embedding)
- Chomsky (Syntactic structures, 1957): English is not a regular language.

Long distance dependencies and embedding

- if ..., then ... / either ..., or ... structures
(a) Either John ${ }_{i}$ is sick or he ${ }_{i}$ is depressed.
(b) Either Mary ${ }_{i}$ knows [that John n_{j} thinks that he ${ }_{j}$ is sick] or she ${ }_{i}$ is depressed.
- arbitrary (sentence) embedding possible, e.g.

The cheese [that the mouse stole]s was expensive.
The cheese [that the mouse [that the cat caught] $]_{s}$ stole] s was expensive.
The cheese [that the mouse [that the cat [that the dog chased]s caught]s stole]s was expensive.
The cheese [that the mouse [that the cat [that the dog [that Peter bought]s chased] $]_{s}$ caught] $]_{S}$ stole] $_{s}$ was expensive.

Constituency

- words can be hierachically grouped to bigger units \Rightarrow phrases / constituents
- [$n P$ Felix] [$v p$ slept].
- [np A cat] [vp slept].
- [NP A small cat] [vp slept].
- [$n p$ A small grey cat] [vp slept].
- [$n P$ Rose] [$v p$ [v admires] [$n p$ Felix]].
- [$N P$ Rose] [$v P$ [v admires] [$N P$ an actor]].
- [${ }_{N P}$ Rose] $[v P$ [v admires] [$N P$ an actor [s who likes Felix]]].

Structural ambiguity

- one sentence with two (or more) different syntactic analyses
- two (or more) different phrase structure trees
- e.g. Sherlock saw the man with the binoculars.
- [s [$N P$ Sherlock] [$V P$ [V saw] [$N P$ the man] [$P P$ with the binoculars]].
- [s [$N P$ Sherlock] [$v P$ [v saw] [$N P$ the man [$P P$ with the binoculars]]].
- other different ambiguities:
- lexical ambiguity; e.g. The fisherman went to the bank.
- scope ambiguity; e.g. Every student read a book.

Natural languages are not regular

- see, e.g., the example of nested dependency:
- a woman met another woman
- a woman whom another woman hired hired another woman
- a woman whom another woman whom another woman hired hired met another woman
- ... etc.
- formal proof using closure under intersection and the pumping lemma for regular languages
- recall: $L 1_{R E G} \cap L 2_{R E G}=L_{R E G}$
- we cannot directly apply the Pumping Lemma to English
- but we can use a common strategy: intersection and homomorphism
- homomorphism $f: f($ a woman $)=w, f($ whom another woman $)=x$, $f($ hired $)=y, f($ met another woman $)=z$
- $w x^{*} y^{*} z$ is a regular language; and
- $f($ English $) \cap w x^{*} y^{*} z=w x^{n} y^{n} z$
- we can apply the Pumping Lemma to $w x^{n} y^{n} z$
- $\Rightarrow x^{n} y^{n}$ is not regular \Rightarrow English is not regular

Context-free language

Definition

A grammar (N, T, S, R) is context-free if all production rules in R are of the form:

$$
A \rightarrow \beta \text { with } A \in N \text { and } \beta \in(N \cup T)^{*} \backslash\{\epsilon\}
$$

Additionally, the rule $S \rightarrow \epsilon$ is allowed if S does not occur in any rule's right-hand side. A language generated by a context-free grammar is said to be context-free.

Proposition

The set of context-free languages is a strict superset of the set of regular languages.
Proof: Each regular language is per definition context-free. $L\left(a^{n} b^{n}\right)$ is context-free but not regular $(S \rightarrow a S b, S \rightarrow \epsilon)$.
Note: $S \rightarrow \epsilon$ is only allowed if S does not occur in any rule's right-hand side, however the problem can always be eliminated $(S \rightarrow \epsilon, S \rightarrow T, T \rightarrow a T b, T \rightarrow a b)$

Examples of context-free languages

- $L_{1}=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$
- generated by the grammar $G_{1}=(\{S\},\{a, b\}, S, R)$ with $\mathrm{R}=\{\mathrm{S} \rightarrow \epsilon, \mathrm{S} \rightarrow \mathrm{aSa}, \mathrm{S} \rightarrow \mathrm{bSb}\}$
- $L_{2}=\left\{a^{i} b^{j}: i \geq j\right\}$
- $L_{3}=\left\{w \in\{a, b\}^{*}:\right.$ more $a^{\prime} s$ than $\left.b^{\prime} s\right\}$
- $L_{4}=\left\{w \in\{a, b\}^{*}\right.$: number of $a^{\prime} s$ equals number of $\left.b^{\prime} s\right\}$
- generated by the grammar $G_{4}=(\{a, b\},\{S, A, B\}, S, R)$ with $\mathrm{R}=\{\mathrm{S} \rightarrow \mathrm{aB}, \mathrm{S} \rightarrow \mathrm{bA}, \mathrm{A} \rightarrow \mathrm{aS}, \mathrm{B} \rightarrow \mathrm{bS}, \mathrm{A} \rightarrow \mathrm{bAA}, \mathrm{B} \rightarrow \mathrm{aBB}$, $\mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}\}$

Ambiguous grammars and ambiguous languages

Definition

Given a context-free grammar G : A derivation which always replaces the leftmost nonterminal symbol is called left-derivation

Definition

A context-free grammar G is ambiguous iff there exists a $w \in L(G)$ with more than one left-derivation, $S \rightarrow^{*} w$.

Definition

A context-free language L is ambiguous iff each context-free grammar G with $L(G)=L$ is ambiguous.

Recall: there is a one-to-one correspondence between left-derivations and derivation trees.

Example of an ambiguous grammar

- $G=(N, T, S, R)$ with $\mathrm{N}=\{\mathrm{D}, \mathrm{N}, \mathrm{NP}, \mathrm{P}, \mathrm{PP}, \mathrm{PN}, \mathrm{V}, \mathrm{VP}, \mathrm{S}\}$, $\mathrm{T}=\{$ the, man, binoculars, sherlock, with, saw $\}$,
$R=\left\{\begin{array}{l}\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}, \mathrm{VP} \rightarrow \mathrm{VNP}, \mathrm{VP} \rightarrow \mathrm{V} \text { NP PP, } \\ \mathrm{NP} \rightarrow \mathrm{PN}, \mathrm{NP} \rightarrow \mathrm{D} N, \mathrm{NP} \rightarrow \mathrm{D} \mathrm{N} \mathrm{PP}, \mathrm{PP} \rightarrow \mathrm{PNP}, \\ \mathrm{V} \rightarrow \text { saw }, \mathrm{PN} \rightarrow \text { sherlock, } \mathrm{N} \rightarrow \text { man, } \\ \mathrm{N} \rightarrow \text { binoculars, } \mathrm{D} \rightarrow \text { the }, \mathrm{P} \rightarrow \text { with }\end{array}\right\}$
- left-derivations:
- $\mathrm{S} \Rightarrow \mathrm{NPVP} \Rightarrow \mathrm{PN}$ VP \Rightarrow Sherlock VP \Rightarrow Sherlock V NP \Rightarrow Sherlock saw NP \Rightarrow...
- $\mathrm{S} \Rightarrow \mathrm{NP}$ VP $\Rightarrow \mathrm{PN}$ VP \Rightarrow Sherlock VP \Rightarrow Sherlock V NP PP \Rightarrow Sherlock saw NP PP \Rightarrow...

Example of an ambiguous grammar

Example of an ambiguous grammar

Push-down automaton

- we saw, that the regular language $a^{*} b^{*}$ can be accepted by an FSA

- take now the language $a^{n} b^{n} \rightarrow$ we cannot create an FSA that accepts $a^{n} b^{n}$, since the 'loops' do not 'remember' how many a's are read at a given moment \Rightarrow we need some kind of "memory"
- Push-down Automaton (PDA)
- a PDA is essentially an FSA augmented with an auxiliary tape or stack on which it can read, write, and erase symbols
- 'last in - first out' (LIFO) system
- the stack can be seen as a kind of "memory"
- context-free languages are accepted by Push-down Automata

Example PDAs

- a PDA for language $a^{n} b^{n}$
- a PDA $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, F\right\rangle$ with
$Q=\left\{q_{0}, q_{1}\right\}$ (set of states)
$\Sigma=\{a, b\}$ (input alphabet)
$\Gamma=\{A\}$ (stack alphabet)
q_{0} (initial state)
$F=\left\{q_{0}, q_{1}\right\}$ (set of final states)
$\delta=\left\{\left(q_{0}, a, \epsilon\right) \rightarrow\left(q_{0}, A\right),\left(q_{0}, b, A\right) \rightarrow\left(q_{1}, \epsilon\right),\left(q_{1}, b, A\right) \rightarrow\left(q_{1}, \epsilon\right)\right\}$

Push-down automaton

Definition

A nondeterministic push-down automaton is a 6-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ with:
(1) a finite, nonempty set of states Q
(2) an alphabet Σ with $Q \cap \Sigma=\emptyset$
(3) a stack alphabet Γ with $\Sigma \cap \Gamma=\emptyset$
(9) a transition relation $\delta:\left(Q \times \Sigma^{*} \times \Gamma^{*}\right) \times\left(Q \times \Gamma^{*}\right)$
(3) an initial state $q_{0} \in Q$ and
(0) a set of final states $F \subseteq Q$.

- nondeterministic and deterministic PDAs are not equivalent!

Push-down automaton

- transition rules of the form $\left(q_{i}, x, \alpha\right) \rightarrow\left(q_{k}, \beta\right)$
- the transitions include not only change of state but also operations on the stack: pop and push
- transition rules from state q_{1} to state q_{2}, while reading a, and
- pop A from the stack: $\left(q_{1}, a, A\right) \rightarrow\left(q_{2}, \epsilon\right)$
- push B to the stack: $\left(q_{1}, a, \epsilon\right) \rightarrow\left(q_{2}, B\right)$
- pop A and push $B:\left(q_{1}, a, A\right) \rightarrow\left(q_{2}, B\right)$
- no stack operation: $\left(q_{1}, a, \epsilon\right) \rightarrow\left(q_{2}, \epsilon\right)$
- according to the definition A and B can also be strings over Γ
- a PDA accepts an input string iff
- the entire input string has been read
- the PDA is in a final (accepting) state
- the stack is empty

Example PDAs

- a PDA for language $w w^{R}$
- a PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ with

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}\right\} \text { (set of states) } \\
& \Sigma=\{a, b\} \text { (input alphabet) } \\
& \Gamma=\{A, B\} \text { (stack alphabet) } \\
& q_{0} \text { (initial state) } \\
& F=\left\{q_{0}, q_{1}\right\} \text { (set of final states) } \\
& \delta=\left\{\left(q_{0}, a, \epsilon\right) \rightarrow\left(q_{0}, A\right),\left(q_{0}, b, A\right) \rightarrow\left(q_{1}, \epsilon\right),\left(q_{1}, b, A\right) \rightarrow\left(q_{1}, \epsilon\right)\right\}
\end{aligned}
$$

Chomsky Normal Form

Definition

A grammar is in Chomsky Normal Form (CNF) if all production rules are of the form
(1) $A \rightarrow a$
(2) $A \rightarrow B C$
with $A, B, C \in T$ and $a \in \Sigma$ (and if necessary $S \rightarrow \epsilon$ in which case S may not occur in any right-hand side of a rule).

Proposition

Each context-free language is generated by a grammar in CNF.

Proposition

No node in a derivation tree of a grammar in CNF has more than two daughters.

Chomsky Normal Form

- Each context-free language is generated by a grammar in CNF.
- Given a context-free grammar G with $\epsilon \notin L(G)$

3 steps

(1) Eliminate complex terminal rules.
(2) Eliminate chain rules.
(3) Eliminate $A \rightarrow B_{1} B_{2} \ldots B_{n}(n>2)$ rules.

CNF: eliminate complex terminal rules

Aim: Terminals only occur in rules of type $A \rightarrow a$
(1) Introduce a new non-terminal X_{a} for each terminal a occurring in a complex terminal rule.
(2) Replace a by X_{a} in all complex terminal rules.
(3) For each X_{a} add a rule $X_{a} \rightarrow a$.

$$
\begin{array}{rlrl}
S & \rightarrow A B A \mid B & A & \rightarrow X_{a} A|C| a \\
A & \rightarrow a A|C| a & B & \rightarrow X_{b} B \mid b \\
B & \rightarrow b B \mid b & C & \rightarrow A \\
C & \rightarrow A & X_{a} & \rightarrow a \\
& X_{b} & \rightarrow b
\end{array}
$$

CNF: eliminate chain rules

Aim: No rules of the form $A \rightarrow B$

- For each circle $A_{1} \rightarrow A_{2}, \ldots, A_{k-1} \rightarrow A_{k}, A_{k} \rightarrow A_{1}$ replace in all rules each A_{i} by a new non-terminal A^{\prime} and delete all $A^{\prime} \rightarrow A^{\prime}$-rules.
- Remove stepwise all rules $A \rightarrow B$ and add for each $B \rightarrow \beta$ a rule $A \rightarrow \beta$

$$
\begin{aligned}
S & \rightarrow A B A \mid B \\
A & \rightarrow X_{a} A|C| a \\
B & \rightarrow X_{b} B \mid b \\
C & \rightarrow A \\
X_{a} & \rightarrow a \\
X_{b} & \rightarrow b
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A^{\prime} B A^{\prime}\left|X_{b} B\right| b \\
A^{\prime} & \rightarrow X_{a} A^{\prime} \mid a \\
B & \rightarrow X_{b} B \mid b \\
X_{a} & \rightarrow a \\
X_{b} & \rightarrow b
\end{aligned}
$$

CNF: $A \rightarrow B_{1} B_{2} \ldots B_{n}(n>2)$

Aim: not more than two non-terminals in one rule's right-hand side

- For each rule of the form $A \rightarrow B_{1} B_{2} \ldots B_{n}$ introduce a new non-terminal $X_{B_{2} \ldots B_{n}}$.
- Remove the rule and add two new rules:

$$
\begin{aligned}
& A \rightarrow B_{1} X_{B_{2} \ldots B_{n}} \\
& X_{B_{2} \ldots B_{n}} \rightarrow B_{2} \ldots B_{n}
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A^{\prime} B A^{\prime}\left|X_{b} B\right| b \\
A^{\prime} & \rightarrow X_{a} A^{\prime} \mid a \\
B & \rightarrow X_{b} B \mid b \\
X_{a} & \rightarrow a \\
X_{b} & \rightarrow b
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow A^{\prime} X_{B A^{\prime}}\left|X_{b} B\right| b \\
A^{\prime} & \rightarrow X_{a} A^{\prime} \mid a \\
B & \rightarrow X_{b} B \mid b \\
X_{a} & \rightarrow a \\
X_{b} & \rightarrow b \\
X_{B A^{\prime}} & \rightarrow B A^{\prime}
\end{aligned}
$$

binary trees

Proposition

If T is an arbitrary binary tree with at least 2^{k} leafs, then height $(T) \geq k$.
Proof by induction on k. The proposition is true for $k=0$. Given the proposition is true for some fixed k, let T be a tree with $\geq 2^{k+1}$ leafs. T has two subtrees of which at least one has 2^{k} leafs. Thus the height of T is $\geq 2^{k+1}$.

Corollary

If a context-free grammar is in CNF, then the height of a derivation tree of a word of length $\geq 2^{k}$, then height (T) is greater than k (note that the last derivation step is always a unary one).

Pumping lemma for context-free languages

Lemma (Pumping Lemma)

For each context-free language L there exists a $n \in \mathbb{N}$ such that for any $z \in L:$ if $|z| \geq n$, then z may be written as $z=u v w x y$ with

- $u, v, w, x, y \in T^{*}$,
- $|v w x| \leq p$,
- $v x \neq \epsilon$ and
- $u v^{i} w x^{i} y \in L$ for any $i \geq 0$.

Pumping lemma: proof sketch

Let $k=|N|$ and $n=2^{k}$. Be $z \in L$ with $|z| \geq n$.

Because of $|z| \geq 2^{k}$ there exists a path in the binary part of the derivation tree of z of length $\geq k$.

At least one non-terminal symbol occurs twice on the path. Starting from the bottom of the path, let A be the first non-terminal occurring twice.

Pumping Lemma: proof sketch

$|v w x| \leq n$ (A is chosen such that no non-terminal occurs twice in the trees spanned by the upper of the two A^{\prime} s) $v x \neq \epsilon$ (a binary rule $A \rightarrow B C$ must have been applied to the upper A).

Pumping Lemma: proof sketch

$u v^{i} w x^{i} y \in L$ for any $i \geq 0$.

Pumping Lemma: application

The language $L\left(a^{k} b^{m} c^{k} d^{m}\right)$ is not context-free

- Assume that $L\left(a^{k} b^{m} c^{k} d^{m}\right)$ is context-free then there is a $n \in \mathbb{N}$ as specified by the Pumping Lemma.
- Choose $z=a^{n} b^{n} c^{n} d^{n}$, and $z=u v w x y$ in accordance with the Pumping Lemma.
- Because of $v w x \leq n$ the string $v w x$ consists either of only a's, of a and b 's, only of b 's, of b and c 's, only of c 's,....
- It follows that the pumped word $u v^{2} w x^{2} y$ cannot be in L.
- That contradicts the assumption that L is context-free.

Closure properties of context-free languages

	Type3	Type2	Type1	Type0
union	+	+	+	+
intersection	+	-	+	+
complement	+	-	+	-
concatenation	+	+	+	+
Kleene's star	+	+	+	+
intersection with a regular language	+	+	+	+

$$
\text { union: } \begin{aligned}
G & =\left(N_{1} \uplus N_{2} \cup\{S\}, T_{1} \cup T_{2}, S, P\right) \text { with } \\
P & =P_{1} \cup_{\uplus} P_{2} \cup\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\}
\end{aligned}
$$

intersection: $L_{1}=\left\{a^{n} b^{n} a^{k}\right\}, L_{2}=\left\{a^{n} b^{k} a^{k}\right\}$, but $L_{1} \cap L_{2}=\left\{a^{n} b^{n} a^{n}\right\}$
complement: de Morgan
concatenation: $G=\left(N_{1} \uplus N_{2} \cup\{S\}, T_{1} \cup T_{2}, S, P\right)$ with

$$
P=P_{1} \cup_{\uplus} P_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}
$$

Kleene's star: $G=\left(N_{1} \cup\{S\}, T_{1}, S, P\right)$ with $P=P_{1} \cup\left\{S \rightarrow S_{1} S, S \rightarrow \epsilon\right\}$

decision problems

Given: grammars $G=(N, \Sigma, S, P), G^{\prime}=\left(N^{\prime}, \Sigma, S^{\prime}, P^{\prime}\right)$, and a word $w \in \Sigma^{*}$
word problem Is w derivable from G ?
emptiness problem Does G generate a nonempty language?
equivalence problem Do G and G^{\prime} generate the same language

$$
\left(L(G)=L\left(G^{\prime}\right)\right) ?
$$

Results for the decision problems

	Type3	Type2	Type1	Type0
word problem	D	D	D	U
emptiness problem	D	D	U	U
equivalence problem	D	U	U	U

D: decidable; U: undecidable

