right-linear grammars		Theorem of Kleene

Introduction to Formal Language Theory — day 2 Regular Languages

Wiebke Petersen & Kata Balogh

(Heinrich-Heine-Universität Düsseldorf)

NASSLLI 2014 University of Maryland, College Park

repetition O	regular expressions 000	finite-state automata 000000000000000000	Theorem of Kleene
Outline			

1 repetition

- 2 right-linear grammars
- 3 regular expressions
- ④ finite-state automata

5 Theorem of Kleene

repetition •		regular expressions 000	finite-state automata 000000000000000000	Theorem of Kleene
Formal la	inguages			

Recall: basic definitions

- alphabet Σ : nonempty, finite set of symbols
- word w: a finite string $x_1 \dots x_n$ of symbols; $(x_1 \dots x_n \in \Sigma)$
- length of a word |w|: number of symbols of a word w (example: |abbaca| = 6)
- empty word ϵ : the word of length 0
- Σ^* is the set of all words over Σ ; $(\epsilon \in \Sigma^*)$
- Σ^+ is the set of all nonempty words over Σ $(\Sigma^+ = \Sigma^* \setminus \{\epsilon\})$

Definition

A formal language L is a set of words over an alphabet Σ , i.e. $L \subseteq \Sigma^*$.

• the class of Type 3 languages can be generated by **right-linear** grammars

Definition

A grammar (N, T, S, R) is **Type3** or **right-linear** iff all rules are of the form:

 $A \rightarrow a \text{ or } A \rightarrow wB \text{ with } A, B \in N, a \in T, \text{ and } w \in T^*$

Additionally, the rule $S \rightarrow \epsilon$ is allowed iff S does not appear in any right-hand side of a rule.

A language generated by a right-linear grammar is said to be a **right-linear language** or a **Type3-language**.

[Remember, we write L(G) for the language generated by a grammar G.]

Examples:

- $P = \{S \rightarrow aB, B \rightarrow bB, B \rightarrow bA, A \rightarrow a\}$ generates (ab^*a)
- $P = \{S \rightarrow \epsilon, S \rightarrow aA, S \rightarrow bB, A \rightarrow aA, A \rightarrow \epsilon, A \rightarrow bB, B \rightarrow bB, B \rightarrow \epsilon\}$ generates (a^*b^*)

• the class of Type 3 languages can be described by **regular** expressions

The set of **regular expressions** $RegEx_{\Sigma}$ over an alphabet $\Sigma = \{a_1, \ldots, a_n\}$ is defined by:

- \emptyset is a regular expression.
- ϵ is a regular expression.
- a_1, \ldots, a_n are regular expressions.
- If a and b are regular expressions over Σ then
 - ► (a|b)
 - ⊳ ab
 - ► a*

are regular expressions too.

repetition O		regular expressions 0●0	finite-state automata 000000000000000000	Theorem of Kleene
Regular e>	pressions			

RegEx: semantics

Each regular expression *r* over an alphabet Σ denotes a formal language $L(r) \subseteq \Sigma^*$.

Regular languages are those formal languages which can be expressed by a regular expression.

The denotation function L is defined inductively:

•
$$L(\emptyset) = \emptyset$$
, $L(\epsilon) = \{\epsilon\}$, $L(a_i) = \{a_i\}$

•
$$L(r_1|r_2) = L(r_1) \cup L(r_2)$$

•
$$L(r_1r_2) = L(r_1) \frown L(r_2)$$

•
$$L(r^*) = L(r)^*$$

 r^{+} is used as a short-hand for r^{-}

Find a regular expression which describes the regular language L (be careful: at least one language is not regular!)

- L is the language over the alphabet $\{a, b\}$ with $L = \{aa, \epsilon, ab, bb\}$. $aa|\epsilon|ab|bb$
- L is the language over the alphabet {a, b} which consists of all words which start with a nonempty string of a's followed by any number of b's. a⁺b^{*}
- L is the language over the alphabet {a, b} such that every a has a b immediately to the right. b*(ab⁺)*
- L is the language over the alphabet $\{a, b\}$ which consists of all words which contain an even number of a's. $b^*(ab^*a)^*b^*$
- L is the language of all palindromes over the alphabet {a, b}. not regular!

- the class of Type 3 languages can be accepted (recognized) by deterministic finite-state machines (detFSA)
- example: detFSA for the language $L(a^+)$

start
$$\rightarrow q_0 \xrightarrow{a} q_1$$

- initial state q_0 , final state q_1
- transitions from q_0 to q_1 reading an a, from q_1 to q_1 reading an a

Definition

A deterministic finite-state automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ with:

- **1** a finite, nonempty set of states Q
- 2) an alphabet Σ with $Q \cap \Sigma = \emptyset$
- **(a)** a transition function $\delta : Q \times \Sigma \rightarrow Q$
- **④** an *initial state* $q_0 \in Q$ and
- **(a)** a set of **final states** $F \subseteq Q$

Definition

A situation of a finite-state automaton $(Q, \Sigma, \delta, q_0, F)$ is a triple (x, q, y)with $x, y \in \Sigma^*$ and $q \in Q$. Situation (x, q, y) produces situation (x', q', y') in one step if there exists an $a \in \Sigma$ such that x' = xa, y = ay' and $\delta(q, a) = q'$, we write $(x, q, y) \mapsto (x', q', y')$ [$(x, q, y) \mapsto^* (x', q', y')$ as usual].

Definition

A word $w \in \Sigma^*$ gets **accepted** by an automaton $(Q, \Sigma, \delta, q_0, F)$ if $(\epsilon, q_0, w) \mapsto^* (w, q_n, \epsilon)$ with $q_n \in F$. An automaton accepts a language iff it accepts every word of the language. We write L(A) for the language accepted by an automaton A.

repetition O		regular expressions	finite-state automata 000●0000000000000	Theorem of Kleene
Examples	(detFSA)			

• accepting the language $L(ab^*c)$ $M_1 = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{(q_0, a, q_1), (q_1, b, q_1), (q_1, c, q_2)\}, q_0, \{q_2\})$ state diagram:

• accepting the language a^*b^*

 $M_1 = (\{q_0, q_1\}, \{a, b\}, \{(q_0, a, q_0), (q_0, b, q_1), (q_1, b, q_1)\}, q_0, \{q_0, q_1\})$

repetition O	regular expressions 000	finite-state automata 0000000000000000	Theorem of Kleene
Example			

- both automatons accept language L((ab)*)
- in automaton graphs we often omit the trap state (partial transition function)

repetition O	regular expressions	finite-state automata 00000●00000000000	Theorem of Kleene
Examples			

• accepting the language $(ha)^*!$

Definition

A nondeterministic finite-state automaton is a 5-tuple $(Q, \Sigma, \Delta, q_0, F)$ with:

- **1** a finite nonempty set of states Q
- **2** an alphabet Σ with $Q \cap \Sigma = \emptyset$
- **(a)** a transition relation $\Delta \subseteq Q \times \Sigma \times Q$
- **(**) an initial state $q_0 \in Q$ and
- **(a)** a set of **final states** $F \subseteq Q$

nondetFSA: extensions

- \bullet an $\epsilon\text{-transition}\overset{\epsilon}{\to}$ allows to change the state without reading a symbol
- a regular-expression transition $\stackrel{r}{\rightarrow}$ allows to change the state by reading in any string $s \in L(r)$

Petersen & Balogh (HHU)

Theorem of Rabin & Scott

A language *L* is accepted by a detFSA iff *L* is accepted by a nondetFSA (with ϵ -transitions and/or regular-expression transitions).

- Why is it useful to have both notions?
 - the detFSAs are conceptually more straightforward
 - it is often easier to construct a nondetFSA
 - for some other classes of automata the two subclasses are not equivalent, so the notions remain important
- example:
 - $L : \{a^n \mid n \text{ is even or dividable by 3}\} (\text{or } L((aa)^* \mid (aaa)^*))$
 - L((aa)^{*} | (aaa)^{*}) is accepted by the automata on the following slides: regex-FSA, *ϵ*-FSA, nondetFSA and detFSA

repetition O		regular expressions	finite-state automata 00000000000000000000000000000000000	Theorem of Kleene
Eliminatin	ig ϵ -transitions			

- the ε-closure of a state q (denoted as ECL(q)) is the set that contains q together with all states that can be reached starting at q by following only ε-transitions
- Given an ε-FSA M eliminating ε-transitions produces an nondetFSA M' such that L(M') = L(M).
- The construction of M' begins with M as input, and takes 3 steps:
 - 1. Make q an accepting state iff ECL(q) contains an accepting state in M.
 - Add an arc from q to q' labeled a iff there is an arc labeled a in M from some state in ECL(q) to q'.
 - 3. Delete all arcs labeled ϵ .

• the the ϵ -FSA for $L((aa)^* \mid (aaa)^*)$

- $ECL(q_0) = \{q_0, q_1, q_2\}$
- 1. make q_0 an accepting (final) state
- 2. add the arcs: from q_0 to q_3 by a and q_0 to q_4 by a
- 3. Delete all arcs labeled ϵ .

repetition O		regular expressions	finite-state automata 00000000000000000000000000000000000	Theorem of Kleene
Eliminatin	g ϵ -transitions			

• step 1 - 2. resulting in:

• nondetFSA (see slide 19)

repetition O		regular expressions	finite-state automata 000000000000000000000	Theorem of Kleene
nondetFSA	A to detFSA			

- make the nondetFSA from the previous slide deterministic
- remove multiple transitions with the same symbol
- idea: each state in detFSA will be a **set of states** from the nondetFSA
 - From q₀ we can go with a to q₃ and q₄ ⇒ in the detFSA we have the states {q₀} and {q₃, q₄} with an a transition

start
$$\rightarrow$$
 $\{q_0\}$ \xrightarrow{a} $\{q_3, q_4\}$

▶ from the states in $\{q_3, q_4\}$ we can go with *a* to q_1 and q_5 ⇒ in the detFSA we add the state $\{q_1, q_5\}$ with an *a* transition from $\{q_3, q_4\}$

Petersen & Balogh (HHU)

		regular expressions	finite-state automata 000000000000000000	Theorem of Kleene
nondetFS	A to detFSA			

• repeat the steps as before, result in in:

• make all states final, where any of the states in the set were final states in the nondetFSA

repetition		regular expressions	finite-state automata	Theorem of Kleene
O		000	000000000000000000	●000000
Theorem of	of Kleene			

Theorem

If L is a formal language, the following statements are equivalent:

- L is regular (i.e., describable by a regular expression)
- L is right-linear (i.e., generated by a right-linear grammar)
- L is FSA-acceptable (i.e., accepted by a finite state automaton)

Proof idea:

- every regular language is right-linear
- every right-linear language is FSA-acceptable
- every FSA-acceptable language is regular

$\Sigma = \{a_1, \ldots, a_n\}$

- $L(\emptyset)$ is generated by $(\{S\}, \Sigma, S, \{\})$,
- 2 $L(\epsilon)$ is generated by $(\{S\}, \Sigma, S, \{S \to \epsilon\})$,
- **3** $L(a_i)$ is generated by $(\{S\}, \Sigma, S, \{S \rightarrow a_i\})$,
- If $L(r_1)$, $L(r_2)$ are regular languages described by r_1, r_2 with generating right-linear grammars (N_1, T_1, S_1, P_1) , (N_2, T_2, S_2, P_2) , then $L(r_1|r_2)$ is generated by $(N_1 \uplus N_2, T_1 \cup T_2, S, P_1 \cup_{\uplus} P_2 \cup \{S \to S_1, S \to S_2\})$,
- $L(r_1r_2)$ is generated by $(N_1 \uplus N_2, T_1 \cup T_2, S_1, P'_1 \cup_{\uplus} P_2)$ $(P'_1$ is obtained from P_1 if all rules of the form $A \rightarrow b$ ($b \in T$) are replaced by $A \rightarrow bS_2$),
- $L(r_1^*)$ is generated by $(N_1, \Sigma, S_1, P'_1 \cup \{S_1 \to \epsilon, S_1 \to S\})$ $(P'_1$ is obtained from P_1 if by all rules of the form $A \to b$ $(b \in T)$ we add the rule $A \to bS$.

If G = (N, T, S, R) is a right-linear grammar then the nondetFSA $M = (N \cup \{\text{final}\}, T, \Delta, S, F)$ with • $F = \{\text{final}, S\}$ if $S \to \epsilon \in R$ or else $F = \{\text{final}\}$. • $(A, a, B) \in \Delta$, if $A \to aB \in R$ and $(A, a, \text{final}) \in \Delta$ if $A \to a \in R$. accepts L(G) = L(M).

Let $M = (Q, \Sigma, \Delta, q_0, F)$ be a nondetFSA.

- Construct an equivalent automaton M' with only one final state and no incoming transitions at the start state: M = (Q ∪ {q_s, q_f}, Σ, Δ', q_s, {q_f}) with Δ' = Δ ∪ {(q_s, ε, q₀)} ∪ {(q_i, ε, q_f | q_i ∈ F}.
- ② For each pair of states (q_i, q_j) replace all $(q_i, r_1, q_j) \in \Delta', (q_i, r_2, q_j) \in \Delta', ...$ by a single transition $(q_i, r_1|r_2|..., q_j)$.

3 As long as there is still a state $q_k \notin \{q_s, q_f\}$ eliminate q_k by the following rule:

Finally the automaton consists only of the two states q_s and q_f and one single transition (q_s, r, q_f) and L(M) = L(r).

	regular expressions 000	finite-state automata 00000000000000000000000	Theorem of Kleene 00000●0
Example			

• starting with the FSA:

• adding ϵ -transitions:

eliminating q₂:

repetition O		regular expressions	finite-state automata 0000000000000000000	Theorem of Kleene 000000●			
Intuitive rules for regular languages							

- L is regular if it is possible to check the membership of a word simply by reading it symbol by symbol while using only a finite stack.
- Finite-state automatons are too weak for:
 - unlimited counting in N ("same number as");
 - recognizing a pattern of arbitrary length ("palindrome");
 - expressions with brackets of arbitrary depth.