
repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Introduction to Formal Language Theory — day 2
Regular Languages

Wiebke Petersen & Kata Balogh

(Heinrich-Heine-Universität Düsseldorf)

NASSLLI 2014
University of Maryland, College Park

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 1 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Outline

1 repetition

2 right-linear grammars

3 regular expressions

4 finite-state automata

5 Theorem of Kleene

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 2 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Formal languages

Recall: basic definitions
alphabet Σ: nonempty, finite set of symbols
word w : a finite string x1 . . . xn of symbols; (x1 . . . xn ∈ Σ)
length of a word |w |: number of symbols of a word w (example:
|abbaca| = 6)
empty word ε: the word of length 0
Σ∗ is the set of all words over Σ; (ε ∈ Σ∗)
Σ+ is the set of all nonempty words over Σ (Σ+ = Σ∗ \ {ε})

Definition
A formal language L is a set of words over an alphabet Σ, i.e. L ⊆ Σ∗.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 3 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Type3-languages / right-linear languages

the class of Type 3 languages can be generated by right-linear
grammars

Definition
A grammar (N,T , S,R) is Type3 or right-linear iff all rules are of the form:

A→ a or A→ wB with A,B ∈ N, a ∈ T , and w ∈ T ∗

Additionally, the rule S → ε is allowed iff S does not appear in any right-hand
side of a rule.
A language generated by a right-linear grammar is said to be a right-linear
language or a Type3-language.
[Remember, we write L(G) for the language generated by a grammar G .]

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 4 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Type3-languages / right-linear languages

Examples:
P = {S → aB,B → bB,B → bA,A→ a}
generates (ab∗a)

P = {S → ε,S → aA,S → bB,A→ aA,A→ ε,A→ bB,B →
bB,B → ε}
generates (a∗b∗)

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 5 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Regular expressions

the class of Type 3 languages can be described by regular
expressions

The set of regular expressions RegExΣ over an alphabet
Σ = {a1, . . . , an} is defined by:
∅ is a regular expression.
ε is a regular expression.
a1, . . . , an are regular expressions.
If a and b are regular expressions over Σ then

I (a|b)
I ab
I a?

are regular expressions too.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 6 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Regular expressions

RegEx: semantics
Each regular expression r over an alphabet Σ denotes a formal language
L(r) ⊆ Σ∗.
Regular languages are those formal languages which can be expressed by
a regular expression.
The denotation function L is defined inductively:

L(∅) = ∅, L(ε) = {ε}, L(ai) = {ai}
L(r1|r2) = L(r1) ∪ L(r2)

L(r1r2) = L(r1) _ L(r2)

L(r∗) = L(r)∗

‘r+’ is used as a short-hand for ‘r _ r∗’.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 7 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Examples: regular expressions

Find a regular expression which describes the regular language L (be
careful: at least one language is not regular!)

L is the language over the alphabet {a, b} with L = {aa, ε, ab, bb}.
aa|ε|ab|bb
L is the language over the alphabet {a, b} which consists of all words
which start with a nonempty string of a’s followed by any number of
b’s. a+b∗

L is the language over the alphabet {a, b} such that every a has a b
immediately to the right. b∗(ab+)∗

L is the language over the alphabet {a, b} which consists of all words
which contain an even number of a’s. b∗(ab∗a)∗b∗

L is the language of all palindromes over the alphabet {a, b}. not
regular!

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 8 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Deterministic finite-state automaton (detFSA)

the class of Type 3 languages can be accepted (recognized) by
deterministic finite-state machines (detFSA)
example: detFSA for the language L(a+)

q0start q1a

a

initial state q0, final state q1
transitions from q0 to q1 reading an a, from q1 to q1 reading an a

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 9 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Deterministic finite-state automaton (detFSA)

Definition
A deterministic finite-state automaton is a 5-tuple (Q,Σ, δ, q0,F)
with:

1 a finite, nonempty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅
3 a transition function δ : Q × Σ→ Q
4 an initial state q0 ∈ Q and
5 a set of final states F ⊆ Q

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 10 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Language accepted by an automaton

Definition
A situation of a finite-state automaton (Q,Σ, δ, q0,F) is a triple (x , q, y)
with x , y ∈ Σ∗ and q ∈ Q.
Situation (x , q, y) produces situation (x ′, q′, y ′) in one step if there
exists an a ∈ Σ such that x ′ = xa, y = ay ′ and δ(q, a) = q′, we write
(x , q, y) 7→ (x ′, q′, y ′) [(x , q, y) 7→∗ (x ′, q′, y ′) as usual].

Definition
A word w ∈ Σ∗ gets accepted by an automaton (Q,Σ, δ, q0,F) if
(ε, q0,w) 7→∗ (w , qn, ε) with qn ∈ F .
An automaton accepts a language iff it accepts every word of the
language. We write L(A) for the language accepted by an automaton A.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 11 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Examples (detFSA)

accepting the language L(ab∗c)

M1 = ({q0, q1, q2}, {a, b, c}, {(q0, a, q1), (q1, b, q1), (q1, c, q2)}, q0, {q2})
state diagram:

q0start q1 q2a

b

c

accepting the language a∗b∗

q0start q1

a

b

b

M1 = ({q0, q1}, {a, b}, {(q0, a, q0), (q0, b, q1), (q1, b, q1)}, q0, {q0, q1})

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 12 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Example

q0start

q2

q1
a

bb a

a|b
q0start q1

a

b

both automatons accept language L((ab)∗)

in automaton graphs we often omit the trap state (partial transition
function)

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 13 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Examples

accepting the language (ha)∗!

1start 2 3 4
h

a

h

!

!

1start 2 3 4
h

aa
!

!

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 14 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Nondeterministic finite-state automaton (nondetFSA)

Definition
A nondeterministic finite-state automaton is a 5-tuple (Q,Σ,∆, q0,F)
with:

1 a finite nonempty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅
3 a transition relation ∆ ⊆ Q × Σ× Q
4 an initial state q0 ∈ Q and
5 a set of final states F ⊆ Q

nondetFSA: extensions
an ε-transition ε→ allows to change the state without reading a
symbol
a regular-expression transition r→ allows to change the state by
reading in any string s ∈ L(r)

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 15 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Equivalence of detFSA and nondetFSA

Theorem of Rabin & Scott
A language L is accepted by a detFSA iff L is accepted by a nondetFSA
(with ε-transitions and/or regular-expression transitions).

Why is it useful to have both notions?
I the detFSAs are conceptually more straightforward
I it is often easier to construct a nondetFSA
I for some other classes of automata the two subclasses are not

equivalent, so the notions remain important
example:

I L : {an | n is even or dividable by 3} (or L((aa)∗ | (aaa)∗))
I L((aa)∗ | (aaa)∗) is accepted by the automata on the following slides:

regex-FSA, ε-FSA, nondetFSA and detFSA

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 16 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Equivalence of detFSA and nondetFSA

L((aa)∗ | (aaa)∗) with regex-FSA

q0start

q1

q2

ε

ε

aa

aaa

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 17 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Equivalence of detFSA and nondetFSA

L((aa)∗ | (aaa)∗) with ε-FSA

q0start

q1

q2

q3

q4

q5

ε

ε

a

a

a a

a

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 18 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Equivalence of detFSA and nondetFSA

L((aa)∗ | (aaa)∗) with nondetFSA

q0start

q3

q4

q1

q2

q5

a

a

a

a

a

aa

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 19 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Equivalence of detFSA and detFSA

L((aa)∗ | (aaa)∗) with detFSA

q0start q4

q5 q1 q6

q2q3a

a

a a

a

aa

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 20 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Eliminating ε-transitions

the ε-closure of a state q (denoted as ECL(q)) is the set that contains
q together with all states that can be reached starting at q by
following only ε-transitions
Given an ε-FSA M eliminating ε-transitions produces an nondetFSA
M ′ such that L(M ′) = L(M).
The construction of M ′ begins with M as input, and takes 3 steps:
1. Make q an accepting state iff ECL(q) contains an accepting state in M.
2. Add an arc from q to q′ labeled a iff there is an arc labeled a in M

from some state in ECL(q) to q′.
3. Delete all arcs labeled ε.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 21 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Eliminating ε-transitions

the the ε-FSA for L((aa)∗ | (aaa)∗)

q0start

q1

q2

q3

q4

q5

ε

ε

a

a

a a

a

ECL(q0) = {q0, q1, q2}
1. make q0 an accepting (final) state
2. add the arcs: from q0 to q3 by a and q0 to q4 by a
3. Delete all arcs labeled ε.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 22 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Eliminating ε-transitions

step 1 – 2. resulting in:

q0start

q2

q4

q3q1

q5

a

a

a

a

a a

a

nondetFSA (see slide 19)

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 23 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

nondetFSA to detFSA

make the nondetFSA from the previous slide deterministic
remove multiple transitions with the same symbol
idea: each state in detFSA will be a set of states from the
nondetFSA

I from q0 we can go with a to q3 and q4
⇒ in the detFSA we have the states {q0} and {q3, q4} with an a
transition

{q0}start {q3, q4}
a

I from the states in {q3, q4} we can go with a to q1 and q5
⇒ in the detFSA we add the state {q1, q5} with an a transition from
{q3, q4}

{q0}start {q3, q4} {q1, q5}
a a

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 24 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

nondetFSA to detFSA

repeat the steps as before, result in in:

{q0}start {q3, q4} {q1, q5} {q3, q2}

{q1, q4}{q3, q5}{q1, q2}

a a a

a

aa

a

make all states final, where any of the states in the set were final
states in the nondetFSA

{q0}start {q3, q4} {q1, q5} {q3, q2}

{q1, q4}{q3, q5}{q1, q2}

a a a

a

aa

a

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 25 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Theorem of Kleene

Theorem
If L is a formal language, the following statements are equivalent:

L is regular (i.e., describable by a regular expression)
L is right-linear (i.e., generated by a right-linear grammar)
L is FSA-acceptable (i.e., accepted by a finite state automaton)

Proof idea:
1 every regular language is right-linear
2 every right-linear language is FSA-acceptable
3 every FSA-acceptable language is regular

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 26 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Proof: Every regular language is right-linear

Σ = {a1, . . . , an}
1 L(∅) is generated by ({S},Σ,S, {}),
2 L(ε) is generated by ({S},Σ, S, {S → ε}),
3 L(ai) is generated by ({S},Σ, S, {S → ai}),
4 If L(r1), L(r2) are regular languages described by r1, r2 with generating

right-linear grammars (N1,T1, S1,P1), (N2,T2, S2,P2), then L(r1|r2) is
generated by (N1] N2,T1 ∪ T2,S,P1 ∪] P2 ∪ {S → S1, S → S2}),

5 L(r1r2) is generated by (N1]N2,T1 ∪T2, S1,P ′1 ∪] P2) (P ′1 is obtained from
P1 if all rules of the form A→ b (b ∈ T) are replaced by A→ bS2),

6 L(r∗1) is generated by (N1,Σ, S1,P ′1 ∪ {S1 → ε,S1 → S}) (P ′1 is obtained
from P1 if by all rules of the form A→ b (b ∈ T) we add the rule A→ bS).

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 27 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Proof: Every right-linear language is FSA-acceptable

If G = (N,T ,S,R) is a right-linear grammar then the nondetFSA
M = (N ∪ {final},T ,∆,S,F) with

F = {final,S} if S → ε ∈ R or else F = {final}.
(A, a,B) ∈ ∆, if A→ aB ∈ R and (A, a, final) ∈ ∆ if A→ a ∈ R.

accepts L(G) = L(M).

S → aA, S → bB, S → ε, A→ aA, A→ a, B → bB, B → b

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 28 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Every FSA-acceptable language is regular

Let M = (Q,Σ,∆, q0,F) be a nondetFSA.
1 Construct an equivalent automaton M′ with only one final state and no incoming

transitions at the start state: M = (Q ∪ {qs , qf },Σ,∆′, qs , {qf }) with
∆′ = ∆ ∪ {(qs , ε, q0)} ∪ {(qi , ε, qf |qi ∈ F}.

2 For each pair of states (qi , qj) replace all (qi , r1, qj) ∈ ∆′, (qi , r2, qj) ∈ ∆′, . . . by a
single transition (qi , r1|r2| . . . , qj).

qi qj

r1

r2
=⇒ qi qj

r1|r2

3 As long as there is still a state qk 6∈ {qs , qf } eliminate qk by the following rule:

qi qk qjr1 r2

r0

r3

=⇒ qi qj
r3|r1r∗0 r2

4 Finally the automaton consists only of the two states qs and qf and one single
transition (qs , r , qf) and L(M) = L(r).

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 29 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Example

starting with the FSA: q1start q2

a

a
b

adding ε-transitions: sstart q1

f

q2
ε

ε

a

a
b

eliminating q1:
I s a−−−→ q2
I s ε−−→ f
I q2

a−−−→ f
I q2

aa−−→ q2

sstart

q2

f
a a

b|aa

ε

sstart f
ε|a(b|aa)∗a

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 30 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Example

starting with the FSA: q1start q2

a

a
b

adding ε-transitions: sstart q1

f

q2
ε

ε

a

a
b

eliminating q2:

I q1
ab∗a−−−−→ q1

sstart q1 f
ε ε

ab∗a

sstart f
(ab∗a)∗

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 31 / 32

repetition right-linear grammars regular expressions finite-state automata Theorem of Kleene

Intuitive rules for regular languages

L is regular if it is possible to check the membership of a word simply
by reading it symbol by symbol while using only a finite stack.
Finite-state automatons are too weak for:

I unlimited counting in N (“same number as”);
I recognizing a pattern of arbitrary length (“palindrome”);
I expressions with brackets of arbitrary depth.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 32 / 32

	repetition
	right-linear grammars
	regular expressions
	finite-state automata
	Theorem of Kleene

