Introduction to Formal Language Theory — day 2

Regular Languages

Wiebke Petersen & Kata Balogh
(Heinrich-Heine-Universitat Disseldorf)

NASSLLI 2014
University of Maryland, College Park

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 1/32

© repetition

© right-linear grammars
© regular expressions
@ finite-state automata

© Theorem of Kleene

Petersen & Balogh (HHU) Formal Language Theory

repetition right-linear grammars ilar expressions

Formal languages

Recall: basic definitions
@ alphabet X : nonempty, finite set of symbols
e word w: a finite string xq ... x, of symbols; (xq...x, € X)
e length of a word |w/|: number of symbols of a word w (example:
|abbaca| = 6)
e empty word e: the word of length 0
@ Y " is the set of all words over ¥; (e € X*)
@ Y ' is the set of all nonempty words over ¥ (X = ¥*\ {¢})

Definition

A formal language L is a set of words over an alphabet ¥, i.e. L C X*.

v

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 3/32

repetition right-linear grammars ar expressions

Type3-languages / right-linear languages

@ the class of Type 3 languages can be generated by right-linear
grammars

Definition

A grammar (N, T, S, R) is Type3 or right-linear iff all rules are of the form:
A—aorA— wBwithAABeN,aeT, andwe T*

Additionally, the rule S — ¢ is allowed iff S does not appear in any right-hand

side of a rule.

A language generated by a right-linear grammar is said to be a right-linear
language or a Type3-language.

[Remember, we write L(G) for the language generated by a grammar G.]

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014

4/32

right-linear grammars

Examples:

e P={S— aB,B— bB,B — bA,A — a}
generates (ab*a)

e P={S—¢S5—aAS— bB,A— aA;A—¢,A— bB,B—
bB,B — ¢}
generates (a*b*)

Petersen & Balogh (HHU) Formal Language Theory

right-line ammars regular expressions

000

Regular expressions

@ the class of Type 3 languages can be described by regular
expressions

The set of regular expressions RegExy over an alphabet
Y ={a1,...,an} is defined by:

@ () is a regular expression.

@ € is a regular expression.

@ aj,...,ap are regular expressions.

o If a and b are regular expressions over X then
(alb)
ab
a*

are regular expressions too.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 6 /32

petition right-lin grammars regular expressions
o] e

Regular expressions

RegEx: semantics

Each regular expression r over an alphabet > denotes a formal language
L(r) C X"

Regular languages are those formal languages which can be expressed by
a regular expression.

The denotation function L is defined inductively:

o L(0) =0, L(e) = {e}, L(ai) = {ai}
o L(n|rn)=L(rn)UL(rn)

o L(nn)=L(n) ~ L(r)

o L(r*)=L(r)*

‘rt'is used as a short-hand for ‘'r —~ r*".

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 7 /32

repetition right-linear grammars regular expressions Kleene
O ooe

Examples: regular expressions

Find a regular expression which describes the regular language L (be
careful: at least one language is not regular!)

@ L is the language over the alphabet {a, b} with L = {aa, ¢, ab, bb}.
aale|ab|bb

o L is the language over the alphabet {a, b} which consists of all words
which start with a nonempty string of a's followed by any number of
b's. atb*

@ L is the language over the alphabet {a, b} such that every a has a b
immediately to the right. b*(ab™)*

@ L is the language over the alphabet {a, b} which consists of all words
which contain an even number of a's. b*(ab*a)*b*

o L is the language of all palindromes over the alphabet {a, b}. not
regular!

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 8 /32

repetition right-linear grammars exp s finite-state automata
O @®0000000000000000

Deterministic finite-state automaton (detFSA)

@ the class of Type 3 languages can be accepted (recognized) by
deterministic finite-state machines (detFSA)

@ example: detFSA for the language L(a™)
a

a
(@

@ initial state qg, final state g;

@ transitions from qg to g; reading an a, from g1 to g1 reading an a

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 9 /32

ar expressions finite-state automata
O@000000000000000

repetition right-linear grammars reg

Deterministic finite-state automaton (detFSA)

Definition
A deterministic finite-state automaton is a 5-tuple (Q, X, 9, qo, F)
with:
@ a finite, nonempty set of states Q
an alphabet ¥ with QNY = ()
a transition function 6 : Q X ¥ — @
an initial state qo € Q and
a set of final states F C Q

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 10 / 32

repetition right-linear grammars Xpressions finite-state automata

00@00000000000000

Language accepted by an automaton

Definition

A situation of a finite-state automaton (Q, X, 9, qo, F) is a triple (x,q,y)
with x,y € ¥* and g € Q.

Situation (x, q,y) produces situation (x',q',y’) in one step if there
exists an a € ¥ such that x' = xa, y = ay’ and 6(q, a) = ¢/, we write
(x,q.y) = (X', d'.y") [(x,q.y) =" (X'.q',y') as usual].

Definition

A word w € ¥* gets accepted by an automaton (Q, X, 0, qo, F) if

(e, go, w) —* (w, gn, €) with g, € F.

An automaton accepts a language iff it accepts every word of the
language. We write L(A) for the language accepted by an automaton A.

v

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 11 /32

repetition right-linear grammars expressions finite-state automata

Examples (detFSA)

O000@0000000000000

@ accepting the language L(ab*c)

Ml = ({%7 qi, Q2}7 {37 ba C}u {(%7 a, ql), (q17 b7 q1)7 (q17 c, Q2)}7 qo, {CI2})
state diagram:

M, = ({QO, ql}v {av b}’ {(q07 a, qO)v (qu b, ql), (qla b, ql)}a do, {q07 ql})

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 12 / 32

right-linear grammars ex s finite-state automata

000080000000 00000

Example

start

@ both automatons accept language L((ab)*)

@ in automaton graphs we often omit the trap state (partial transition
function)

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 13 /32

finite-state automata
0O0000e00000000000

@ accepting the language (ha)*!

start

Petersen & Balogh (HHU) Formal Language Theory

repetition right-linear grammars regular expressions finite-state automata
O 000000800000 00000

Nondeterministic finite-state automaton (nondetFSA)

Definition
A nondeterministic finite-state automaton is a 5-tuple (Q,X, A, qo, F)
with:

© a finite nonempty set of states Q

@ an alphabet ¥ with QNY = ()

© a transition relation A C Q x X x @

@ an initial state g € Q and

© a set of final states F C Q

nondetFSA: extensions

@ an e-transition - allows to change the state without reading a
symbol

@ a regular-expression transition — allows to change the state by
reading in any string s € L(r)

V.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 15 / 32

reg

Equivalence of detFSA and nondetFSA

right-linear grammars

expressions finite-state automata
0000000 e000000000

Theorem of Rabin & Scott

A language L is accepted by a detFSA iff L is accepted by a nondetFSA
(with e-transitions and/or regular-expression transitions).

@ Why is it useful to have both notions?

> the detFSAs are conceptually more straightforward

> it is often easier to construct a nondetFSA

» for some other classes of automata the two subclasses are not
equivalent, so the notions remain important

@ example:
» L:{a" | nis even or dividable by 3} (or L((aa)* | (aaa)*))
» L((aa)* | (aaa)*) is accepted by the automata on the following slides:
regex-FSA, e-FSA, nondetFSA and detFSA

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 16 / 32

finite-state automata
000000008000 00000

o L((aa)* | (aaa)*) with regex-FSA

aa

start

aaa

Petersen & Balogh (HHU) Formal Language Theory

finite-state automata
000000000 e0000000

o L((aa)* | (aaa)*) with e-FSA

start

Petersen & Balogh (HHU) Formal Language Theory

finite-state automata
000000000080 00000

o L((aa)* | (aaa)*) with nondetFSA

Petersen & Balogh (HHU) Formal Language Theory

right-linear grammars ex s finite-state automata

Equivalence of detFSA and detFSA

o L((aa)* | (aaa)*) with detFSA

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 20 / 32

re| io right-linear grammars ilar expressions finite-state automata
O O 000000000000 e0000

Eliminating e-transitions

@ the e-closure of a state g (denoted as ECL(q)) is the set that contains
q together with all states that can be reached starting at g by
following only e-transitions

@ Given an e-FSA M eliminating e-transitions produces an nondetFSA
M’ such that L(M') = L(M).
@ The construction of M’ begins with M as input, and takes 3 steps:

1. Make g an accepting state iff ECL(q) contains an accepting state in M.

2. Add an arc from g to q’ labeled a iff there is an arc labeled a in M
from some state in ECL(q) to ¢'.

3. Delete all arcs labeled e.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 21 /32

repetition right-li grammars ar expressions finite-state automata

000000000000 0e000

Eliminating e-transitions

o the the e-FSA for L((aa)* | (aaa)*)

start

o ECL(q0) = {qo0, g1, 92}

wnp o=

make go an accepting (final) state
add the arcs: from gg to g3 by a and g to g4 by a

Delete all arcs labeled €.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 22 /32

finite-state automata
000000000000 00e00

@ step 1 — 2. resulting in:

@ nondetFSA (see slide 19)

Petersen & Balogh (HHU) Formal Language Theory

repetition right-linear grammars expressions finite-state automata

O 000000000000 000e0
nondetFSA to detFSA

@ make the nondetFSA from the previous slide deterministic

@ remove multiple transitions with the same symbol

@ idea: each state in detFSA will be a set of states from the
nondetFSA

» from gg we can go with a to gz and g4
= in the detFSA we have the states {qo} and {qg3, gs} with an a
transition

a

» from the states in {qg3, g4} we can go with a to g; and gs
= in the detFSA we add the state {q1, g5} with an a transition from

{a3, a4}

a a
start @

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 24 / 32

ion g mmars e sions finite-state automata

nondetFSA to detFSA

000000000000 0000e

@ repeat the steps as before, result in in:

start

@ make all states final, where any of the states in the set were final
states in the nondetFSA

start

}

NASSLLI 2014 25 /32

Petersen & Balogh (HHU) Formal Language Theory

right-linea mmars e fini tomata Theorem of Kleene
9000000

Theorem of Kleene

Theorem
If L is a formal language, the following statements are equivalent:
o L is regular (i.e., describable by a regular expression)

o L is right-linear (i.e., generated by a right-linear grammar)

o L is FSA-acceptable (i.e., accepted by a finite state automaton)

Proof idea:
@ every regular language is right-linear
@ every right-linear language is FSA-acceptable
© every FSA-acceptable language is regular

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 26 / 32

repetition right-linear grammars xpressions fini Theorem of Kleene

0®@00000

Proof: Every regular language is right-linear

Y ={a,...,a,}
Q L(D) is generated by ({S}, X, S,{}),
@ L(e) is generated by ({S},X,5,{S — €}),
O L(a) is generated by ({S},%,5,{S — a;}),

Q If L(n), L(r2) are regular languages described by r1, r» with generating
right-linear grammars (Ny, Ty, S1, P1), (N2, T2, Sz, Po), then L(r|r) is
generated by (N W Ny, T U T, 5, Py Uy P, U{S — 51,5 — S}),

© L(rr) is generated by (Ny W Ny, Ty U T, Sy, P; Uy P2) (P is obtained from
Py if all rules of the form A — b (b € T) are replaced by A — bS5),

Q L(r{) is generated by (N1, X, S1, P; U {51 — €, 51 — S}) (P; is obtained
from Py if by all rules of the form A — b (b € T) we add the rule A — bS).

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 27 / 32

re p stition right-linear grammars re u\ ar expressions f E Theorem of Kleene

0000000

Proof Every right-linear Ianguage is FSA- acceptable

If G= (N, T,S,R) is a right-linear grammar then the nondetFSA
M = (N U {final}, T, A, S, F) with

o F = {final,S} if S — ¢ € R or else F = {final}.

e (A,a,B)e A, if A» aB € R and (A a,final) e Aif A— a€cR.
accepts L(G) = L(M).

S—aA S—bB,S—e¢ A—aA A—a B—bB, B—b

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 28 / 32

right-line ammars ar expressions fi Theorem of Kleene

000@000

Every FSA-acceptable language is regular

Let M = (Q, X, A, qo, F) be a nondetFSA.

@ Construct an equivalent automaton M’ with only one final state and no incoming
transitions at the start state: M = (QU {qs,qr}, X, A’, qs, {qr}) with
A'=AU{(gs:€ 90)} U{(qi € qrlgi € F}.

@ For each pair of states (g, g;) replace all (gi, 1, q;) € A',(qi,r2,q;) € A’,... by a
single transition (gi, n|r|- .., q;).

rn

=
r

© As long as there is still a state g« € {gs, gr} eliminate g« by the following rule:

r3
N\ :
rlrrgr
n r —

h

@ Finally the automaton consists only of the two states gs and gr and one single
transition (gs, r, gr) and L(M) = L(r).

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 29 /32

mmars ex fin u Theorem of Kleene
[e]e]e]e] le]e]

Example

a
@ starting with the FSA: 1t .@ b
a

a
@ adding e-transitions: giapt G € e‘e b
a
o)

@ eliminating qgi: start
s—— @
s—>f
g2 = f

aa
G2 — Q2

vV vyVvyYy

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 30/ 32

Theorem of Kleel

[e]e]e]o]e] o)

Example

a
@ starting with the FSA: 1t ‘@ b
a
a
@ adding e-transitions: start G € e.e b

@ eliminating go:
ab*a
> —q1

ab*a

OnOn0 O
start start

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 31/32

right-linear gra ars ar ex ons fin Theorem of Kleene
ole 000000

Intuitive rules for regular languages

o L is regular if it is possible to check the membership of a word simply
by reading it symbol by symbol while using only a finite stack.
o Finite-state automatons are too weak for:

» unlimited counting in N (“same number as”);
» recognizing a pattern of arbitrary length (“palindrome”);
> expressions with brackets of arbitrary depth.

Petersen & Balogh (HHU) Formal Language Theory NASSLLI 2014 32/32

	repetition
	right-linear grammars
	regular expressions
	finite-state automata
	Theorem of Kleene

