Introduction to Formal Language Theory — day 1 Formal Complexity of Natural Languages; Languages, Grammars, Chomsky Hierarchy

Wiebke Petersen & Kata Balogh

(Heinrich-Heine-Universität Düsseldorf)

NASSLLI 2014 University of Maryland, College Park

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000	000000000000	0000000
About this course			

- introduction to the theory of formal languages, grammars and automatons from a linguistic point of view
- core question: "How complex are natural languages?"

• topics:

- modeling natural languages as formal languages
- the Chomsky hierarchy and the properties of its language classes
- grammars and automatons for language generation and acceptance
- decision problems and the notion of reducibility
- Iecturers:
 - Wiebke Petersen (petersen@phil.uni-duesseldorf.de)
 Kata Balogh (katalin.balogh@hhu.de)
 - Heinrich-Heine-Universität Düsseldorf
 www.phil-fak.uni-duesseldorf.de/en/computational-linguistics/
- COURSE page: http://user.phil.hhu.de/~petersen/NASSLLI2014/

Outline

Motivation

Preliminaries

- alphabets and words
- operations on words
- formal languages

3 Chomsky-hierarchy

- describing formal languages
- formal grammars
- Chomsky-hierarchy

4 NLs as FLs

Motivation			
•0000000	000000	000000000000	0000000
Formal complexity of	natural languages		

- Latvian, German, English, Chinese, ...
- Prolog, Pascal, ...
- Esperanto, Volapük, Interlingua, ...
- proposition logic, predicate logic

• . . .

Motivation			
Formal complexity of	f natural languages	0000000000000	0000000

- Latvian, German, English, Chinese, ...
- vague, ambiguous
 - lexical ambiguities
 - They passed the port at midnight.
 - structural ambiguities
 - * Sherlock saw the man with the binoculars.

- only experts: humans
- natural languages develop

Motivation			
0000000	000000	000000000000	0000000
Formal complexity of	natural languages		

- difficult to learn (e.g. second language)
- \bullet complex phonology / morphology / syntax / \ldots
- difficult to parse

Motivation			
00000000	0000000	0000000000000	000000
Formal complet	xity of natural langua	TAS	

- computational complexity
- structural complexity

Structural complexity

- Natural languages are modeled as abstract symbol systems with construction rules.
- Questions about the grammaticality of natural sentences correspond to questions about the syntactic correctness of programs or about the well-formedness of logic expressions.

Motivation
000000000

Preliminaries

Chomsky-hierarchy

What a grammar theory has to explain

- the cat chases dogs
- the cat dogs chases
- the dogs cat chases
- the dogs chases cat
- the chases dogs cat
- the chases cat dogs
- cat chases dogs the
- cat chases the dogs
- cat dogs the chases
- cat dogs chases the
- cat the dogs chases
- cat the chases dogs

- odd dogs the cat chases
- dogs the chases cat
- dogs chases cat the
- dogs chases the cat
- dogs cat chases the
- dogs cat the chases
- chases dogs cat the
- chases dogs the cat
- chases the cat dogs
- chases the dogs cat
- chases cat the dogs
- chases cat dogs the

The number of grammatical sentences is small compared to all possible word sequences.

Petersen & Balogh (HHU)

- Anne sees Peter.
- Anne sees Peter in the garden with the binoculars.
- Anne who dances sees Peter whom she met yesterday in the garden with the binoculars.
- Anne sees Peter and Hans and Sabine and Joachim and Elfriede and Johanna and Maria and Jochen and Thomas and Andrea.

The length of a sentence influences the processing complexity, but it is not a sign of structural complexity!

Motivation		Chomsky-hierarchy	
000000000	000000	000000000000	0000000
Natural Language T	heories vs. Formal Lan	guage Theory	

Natural Language Theories

- grammar theories
- explain language data
- are language specific (Latvian, German, ...)

Formal Language Theory

- a theory about the structure of symbol strings
- not language specific
- allows statements about the mechanisms for generating and recognizing sets of symbol strings

Natural Languages and Formal Languages

- Generative Grammar (linguistics): from a finite number of words + finite number of rules \rightarrow infinite number of sentences
- Standard (GG) Assumptions: (about any natural language)
 - The length of any sentence is finite. (whether letters, phonemes, morphemes, or words)
 - There is no longest sentence. (because of recursion)
- from these two assumptions it follows that the cardinality of the set of sentences in any natural language is infinite

- modeling any natural language as a set of strings (made of words, morphemes etc.)
- the set of possible strings formed from a vocabulary can be grammatical or ungrammatical
- language: the set of all grammatical strings
- grammar: determines the set of all grammatical strings

Chomsky-hierarchy 000000000000000

Alphabets and words

Definition

- alphabet Σ : nonempty, finite set of symbols
- word w: a finite string $x_1 \dots x_n$ of symbols; $(x_1 \dots x_n \in \Sigma)$
- length of a word |w|: number of symbols of a word w (example: |abbaca| = 6)
- empty word ϵ : the word of length 0
- Σ^* is the set of all words over Σ ; $(\epsilon \in \Sigma^*)$
- Σ^+ is the set of all nonempty words over Σ $(\Sigma^+ = \Sigma^* \setminus \{\epsilon\})$

	Preliminaries	Chomsky-hierarchy	
Blank symbol empt	ty word and emp	tv set	

Be careful!

The blank symbol □ can be a *symbol* of the alphabet and thus a word of length 1 (we do not distinguish in our notation between symbols and words of length 1).

The empty word ϵ is a *word* of length 0.

The empty set \emptyset is a *set*.

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	○○●O○○○	0000000000000	0000000
Concatenation			

Definition

The **concatenation** of two words $w = a_1 a_2 \dots a_n$ and $v = b_1 b_2 \dots b_m$ with $n, m \ge 0$ is

$$w \frown v = a_1 \dots a_n b_1 \dots b_m$$

The concatenation \frown is a function $\frown: \Sigma^* \times \Sigma^* \to \Sigma^*$, which assigns strings to pairs of strings.

We often write uv instead of u - v.

$$w \frown \epsilon = \epsilon \frown w = w$$
 neutral element
 $u \frown (v \frown w) = (u \frown v) \frown w$ associativity

 (Σ^*, \frown) is a semi-group with neutral element (monoid).

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	○○○●○○○	0000000000000	0000000
Exponents,	Kleene star, and reversals		

Exponents

• w^n : w concatenated n-times with itself (e.g.: $w^3 = w \frown w \frown w$);

•
$$w^0 = \epsilon; \; w^* = \{w^0, w^1, w^2, w^3, ...\}$$

The exponent of a word is a word.

Kleene star

- $w^* = \bigcup_{n>0} \{w^n\}$ (the set of all words of the form w^n).
- Note: $\epsilon \in w^*$ for any word w ($\epsilon = w^0$).

The Kleene star of a word is a set of words.

Reversals

- The reversal of a word w is denoted w^R (e.g.: $(abcd)^R = dcba$).
- A word w with $w = w^R$ is called a **palindrome** (e.g.: madam, mum, otto, anna, ...).

	Preliminaries	Chomsky-hierarchy	
00000000	0000000	000000000000	000000
Formal language			

Definition

A formal language L is a set of words over an alphabet Σ , i.e. $L \subseteq \Sigma^*$.

Examples:

- language L_{pal} over the Latin alphabet of the palindromes in English $L_{pal} = \{mum, madam, ... \}$
- language L_{Mors} over the alphabet $\{-, \cdot\}$ of the letters of the Latin alphabet encoded in Morse's code: $L_{Mors} = \{\cdot-, -\cdots, \dots, -\cdots\}$
- the empty set
- the set of words of length 13 over the alphabet $\{a, b, c\}$
- English?

00000000	0000000	000000000000	000000
Operations on fo	ormal languages		

Definition

• If $L \subseteq \Sigma^*$ and $K \subseteq \Sigma^*$ are two formal languages over an alphabet Σ , then

$$K \cup L, K \cap L, K \setminus L$$

are languages over Σ too.

• The concatenation of two formal languages K and L is

$$K \frown L := \{ v \frown w \in \Sigma^* \mid v \in K, w \in L \}$$

•
$$L^n = \underbrace{L \frown L \frown L \ldots \frown L}_{n-\text{times}}$$

• $L^* := \bigcup_{n>0} L^n$. Note: $\epsilon \in L^*$ for any language

	Preliminaries	Chomsky-hierarchy	
00000000	000000	000000000000	000000
Examples: operatio	ns on formal lang	llages	

Example

 $K = \{abb, a\} \text{ and } L = \{bbb, a\}$ • $K \setminus L = \{abb\}$ • $K \cup L = \{abb, a, bbb\}$ • $K \cap L = \{a\}$ • $K \cap L = \{a\}$ • $K \cap L = \{abbbbb, abba, abbb, aa\}$ • $L \cap K = \{bbbabb, bbba, aabb, aa\}$ • $K^2 = \{abbabb, abba, aabb, aa\}$

•
$$K \frown \emptyset = \emptyset$$

•
$$K \frown \{\epsilon\} = K = \{\epsilon\} \frown K$$

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000	●000000000000	0000000
Enumerating all elem	ients of a language		

- Peter says that Mary is fallen off the tree.
- Oskar says that Peter says that Mary is fallen off the tree.
- Lisa says that Oskar says that Peter says that Mary is fallen off the tree.
- . . .

Enumerating all strings of a language is a bad idea, as

- the set of strings of a natural language is infinite
- the enumeration does not gather any generalizations about the language

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000	○●○○○○○○○○○○	0000000
Grammars			

Grammar

- A formal grammar is a **generating device** which can generate (and analyze) strings/words.
- Grammars are finite rule systems.
- The set of all strings generated by a grammar is a formal language (= generated language).
- Example grammar:
 - $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}, \; \mathsf{VP} \to \mathsf{V}, \; \mathsf{NP} \to \mathsf{DET} \; \mathsf{N}, \; \mathsf{NP} \to \mathsf{PN},$
 - $\mathsf{DET} \to \mathsf{the}, \ \mathsf{N} \to \mathsf{cat}, \ \mathsf{V} \to \mathsf{sleeps}, \ \mathsf{PN} \to \mathsf{Mia}$
- generates the sentences (strings of words):

the cat sleeps, Mia sleeps

Automata

Automaton

- An automaton is a recognizing device which accepts strings/words.
- The set of all strings accepted by an automaton is a formal language (= accepted language).

accepts: $L(ab^*a)$

Definition

A formal grammar (also Type0-grammar) is a 4-tuple G = (N, T, S, R) with

- an alphabet of nonterminals N,
- an alphabet of terminals T with $N \cap T = \emptyset$,
- a start symbol $S \in N$,

• a finite set of rules/productions

$$R \subseteq \{ \langle \alpha, \beta \rangle \mid \alpha, \beta \in (N \cup T)^* \text{ and } \alpha \notin T^* \}.$$

Instead of $\langle \alpha, \beta \rangle$ we often write $\alpha \to \beta$.

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000		0000000
Formal grammar			

Terminology

- Let G = (N, T, S, R) be a grammar and $v, w \in (T \cup N)^*$:
 - v is directly derived from w (or w directly generates v), $w \Rightarrow v$ if $w = w_1 \alpha w_2$ and $v = w_1 \beta w_2$ such that $\langle \alpha, \beta \rangle \in R$
 - v is derived from w (or w generates v), $w \Rightarrow^* v$ if there exists $w_0, w_1, \ldots, w_k \in (T \cup N)^*$ $(k \ge 0)$ such that $w = w_0$, $w_k = v$ and $w_{i-1} \Rightarrow w_i$ for all $k \ge i \ge 0$
 - \Rightarrow^* denotes the reflexive, transitive closure of \Rightarrow
 - *L*(*G*) = {*w* ∈ *T**|*S* ⇒* *w*} is the formal language generated by the grammar *G*
 - Two grammars G_1 and G_2 are weakly equivalent if and only if (iff) they generate the same language, i.e. $L(G_1) = L(G_2)$.

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000		0000000
Example			

$$G_1 = (\{S, NP, VP, N, V, D, N, PN\}, \{the, cat, peter, chases\}, S, R)$$

$$R = \left\{ \begin{array}{cccc} \mathsf{S} & \to & \mathsf{NP} \ \mathsf{VP} & \mathsf{VP} & \to & \mathsf{V} \ \mathsf{NP} & \mathsf{NP} & \to & \mathsf{D} \ \mathsf{N} \\ \mathsf{NP} & \to & \mathsf{PN} & \mathsf{D} & \to & \mathsf{the} & \mathsf{N} & \to & \mathsf{cat} \\ \mathsf{PN} & \to & \mathsf{peter} & \mathsf{V} & \to & \mathsf{chases} \end{array} \right\}$$

$$L(G_1) = \begin{cases} \text{the cat chases peter} & \text{peter chases the cat} \\ \text{peter chases peter} & \text{the cat chases the cat} \end{cases}$$

"the cat chases peter" can be derived from S by:

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000		0000000
Derivation tree			

- $\begin{array}{lll} \mathsf{S} & \Rightarrow \mathsf{NP} \; \mathsf{VP} & \Rightarrow \mathsf{NP} \; \mathsf{V} \; \mathsf{NP} & \Rightarrow \mathsf{NP} \; \mathsf{V} \; \mathsf{PN} \\ & \Rightarrow \mathsf{NP} \; \mathsf{V} \; \mathsf{peter} & \Rightarrow \mathsf{NP} \; \mathsf{chases \; peter} & \Rightarrow \mathsf{D} \; \mathsf{N} \; \mathsf{chases \; peter} \end{array}$
 - \Rightarrow D cat chases peter \Rightarrow the cat chases peter
 - S NP VP Det N V NP | | | | the cat chases PN | Peter
- One derivation determines one derivation tree, but the same derivation tree can result from different derivations.

Not all formal languages are derivable from a formal grammar

- The set of all formal languages over an alphabet $\Sigma = \{a\}$ is $\mathcal{POW}(\Sigma^*)$; hence, the set is uncountable (infinite).
- The set of grammars generating formal languages over Σ with finite sets of productions is countable (infinite).
- Hence, the set of formal languages generated by a formal grammar is a strict subset of the set of all formal languages.

- The Chomsky-hierarchy is a hierarchy over structure conditions on the productions.
- Constraining the structure of the productions results in a restricted set of languages.
- The language classes correspond to conditions on the right- and left-hand sides of the productions.
- The Chomsky-hierarchy reflects a special form of complexity, other criteria are possible and result in different hierarchies.
- Linguists benefit from the rule-focussed definition of the Chomsky-hierarchy.

Motivation 00000000

Noam Chomsky

Preliminaries

Chomsky-hierarchy

NLs as FLs

Noam Chomsky (* 7.12.1928, Philadelphia) Noam Chomsky, Three Models for the Description of Language, (1956)

Petersen & Balogh (HHU)

Formal Language Theory

NASSLLI 2014 30 / 40

	Chomsky-hierarchy	
Chomsky-hierarchy		

A grammar (N, T, S, R) is a

- Type 0 or unrestricted (phrase structure) grammar iff every production is of the form α → β with α ∈ (N ∪ T)* \ T* and β ∈ (N ∪ T)*; generates a recursively enumerable language (RE).
- Type 1 or context-sensitive grammar iff every production is of the form γAδ → γβδ with γ, δ, β ∈ (N ∪ T)*, A ∈ N and β ≠ ε; generates a context-sensitive language (CS).
- Type 2 or context-free grammar iff every production is of the form A → β with A ∈ N and β ∈ (N ∪ T)* \ {ε}; generates a context-free language (CF).
- Type 3 or right-linear grammar iff every production is of the form A → βB or A → β with A, B ∈ N and β ∈ T* \ {ε}; generates a regular language (REG).

For Type 1-3 languages a rule $S \to \epsilon$ is allowed if S does not occur in any rule's right-hand side.

Petersen & Balogh (HHU)

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000	○○○○○○○○○○○●○	0000000
Chomsky-hierarch	ny [.] main theorem		

		Chomsky-hierarchy	
00000000	000000	0000000000000	000000
Chomsky-hierar	chy: overview		

type	grammar	rules	machine	idea	word problem
RE	phrase struc- ture	$\alpha ightarrow \beta$	Turing machine		undecidable
CS	context- sensitive	$\gamma A \delta o \gamma \beta \delta$	linearly restricted automaton		exponential
CF	context- free	A ightarrow eta	pushdown- automaton		cubic
REG	right- linear	A ightarrow aB b	finite-state automaton		linear

Why is the formal formal complexity of natural languages interesting?

- It gives information about the general structure of natural language
- It allows to draw conclusions about the adequacy of grammar formalisms
- It determines a lower bound for the computational complexity of natural language processing tasks

Which is the class of natural languages?

Which idealizations about NL are necessary?

- 1 The family of natural languages exists.
- Language = set of strings over an alphabet: 2
- Natural languages are generated by finite rule systems (grammars) 3
- Each NL consists of an *infinite* set of strings

The family of natural languages exists:

- all natural languages are structurally similar
- all natural languages have a similar generative capacity

Arguments:

- all NLs serve for the same tasks
- children can learn each NL as their native language (within a similar period of time)
- \Rightarrow No evidence for a principal structural difference

Language = infinite set of strings over an alphabet:

- native speakers have full competence
- consistent grammaticality judgements

Arguments:

- all mistakes are due to performance not competence
- Mathews (1979) counter examples:
 - The canoe floated down the river sank.
 - The editor authors the newspaper hired liked laughed.
 - The man (that was) thrown down the stairs died.
 - ▶ The editor (whom) the authors the newspaper hired liked laughed.

Natural languages are generated by finite rule systems (grammars):

Arguments:

If a language is infinite, a finite set of rules can explain

- how a language can be learned
- how we understand each others sentences

Motivation	Preliminaries	Chomsky-hierarchy	NLs as FLs
00000000	0000000	0000000000000	00000●0
About the idealization	ons (cont.)		

Each NL consists of an infinite set of strings

Arguments:

- Recursion in NL:
 - John likes Peter
 - John likes Peter and Mary
 - John likes Peter and Mary and Sue
 - ▶ John likes Peter and Mary and Sue and Otto and ...
- (Donaudampfschiffskapitänsmützenschirm ...)

However:

• The set of all English sentences that have been used so far and that will be used in the time of mankind is finite.

Tomorrow

- bottom of the Chomsky-hierarchy
- Type 3 languages and grammars
- finite-state automaton
- regular expressions