
- 1. Grammatik für $L(G_1) \cup L(G_2)$: $(\{S, S_1, S_2\}, \{a, b\}, S, P)$ mit $P = \{S \to S_1, S \to S_2, S_1 \to aS_1b, S_1 \to \epsilon, S_2 \to aS_2b, S_2 \to bS_2a, S_2 \to \epsilon\}$
 - Grammatik für $L(G_1) \circ L(G_2)$: $(\{S, S_1, S_2\}, \{a, b\}, S, P)$ mit $P = \{S \to S_1S_2, S_1 \to aS_1b, S_1 \to \epsilon, S_2 \to aS_2b, S_2 \to bS_2a, S_2 \to \epsilon\}$
 - Grammatik für $L(G_1)^*$: $(\{S, S_1\}, \{a, b\}, S, P)$ mit $P = \{S \to S_1 S, S \to \epsilon, S_1 \to a S_1 b, S_1 \to \epsilon\}$
- 2. Die Grammatikregeln $S \to S_1S_2, S_1 \to aS_1b, S_1 \to \epsilon, S_2 \to aS_2b, S_2 \to bS_2a, S_2 \to \epsilon$ werden schrittweise in CNF gebracht:
 - **0. Schritt:** Die Grammatik wird so umgewandelt, dass keine Regeln der Form $A \to \epsilon$ mehr vorkommen (wenn $S \to \epsilon$ vorkommt, darf S nicht in einer rechten Regelseite auftreten). [Dieser Schritt fehlte in den ursprünglichen Folien, dies wurde inzwischen korrigiert] $S \to S_1S_2, S_1 \to aS_1b, S_1 \to ab, S_2 \to aS_2b, S_2 \to ab, S_2 \to bS_2a, S_2 \to ba$
 - **1. Schritt:** Terminale erscheinen nur in Regeln der Form $A \to b$: $S \to S_1S_2, S_1 \to X_aS_1X_b, S_1 \to X_aX_b, S_2 \to X_aS_2X_b, S_2 \to X_aX_b, S_2 \to X_bS_2X_a, S_2 \to X_bX_a, X_a \to a, X_b \to b$
 - **2. Schritt:** Keine Regeln der Form $A \to B$ (da unsere Grammatik keine Regeln dieser Form aufweist, muss keine Anpassung vorgenommen werden).
 - **3. Schritt:** Nicht mehr als 2 Nichtterminale in einer rechten Regelseite:

$$S \rightarrow S_1S_2, S_1 \rightarrow Y_{X_aS_1}X_b, Y_{X_aS_1} \rightarrow X_aS_1, S_1 \rightarrow X_aX_b, S_2 \rightarrow Y_{X_aS_2}X_b, Y_{X_aS_2} \rightarrow X_aS_2, S_2 \rightarrow X_aX_b, S_2 \rightarrow Y_{X_bS_2}X_a, Y_{X_bS_2} \rightarrow X_bS_2, S_2 \rightarrow X_bX_a, X_a \rightarrow a, X_b \rightarrow b$$

3.

4.

(noch) zu lesende Kette	aktueller Zustand	aktueller Keller	anzuwendender Übergang
aabb	q_0	ϵ	$(q_0, \epsilon, \epsilon, S, q_1)$
aabb	q_1	S	$(q_1, \epsilon, S, aSb, q_1)$
aabb	q_1	aSb	(q_1,a,a,ϵ,q_1)
abb	q_1	Sb	(q_1,ϵ,S,aSb,q_1)
abb	q_1	aSbb	(q_1,a,a,ϵ,q_1)
bb	q_1	Sbb	$(q_1,\epsilon,S,\epsilon,q_1)$
bb	q_1	bb	(q_1,b,b,ϵ,q_1)
b	q_1	b	(q_1,b,b,ϵ,q_1)
ϵ	q_1	ϵ	